--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: best_model-yelp_polarity-16-42 results: [] --- # best_model-yelp_polarity-16-42 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2717 - Accuracy: 0.9375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.2161 | 0.9375 | | No log | 2.0 | 2 | 0.2155 | 0.9375 | | No log | 3.0 | 3 | 0.2142 | 0.9375 | | No log | 4.0 | 4 | 0.2123 | 0.9375 | | No log | 5.0 | 5 | 0.2097 | 0.9375 | | No log | 6.0 | 6 | 0.2064 | 0.9375 | | No log | 7.0 | 7 | 0.2032 | 0.9375 | | No log | 8.0 | 8 | 0.1996 | 0.9375 | | No log | 9.0 | 9 | 0.1958 | 0.9375 | | 0.4487 | 10.0 | 10 | 0.1921 | 0.9375 | | 0.4487 | 11.0 | 11 | 0.1882 | 0.9375 | | 0.4487 | 12.0 | 12 | 0.1845 | 0.9688 | | 0.4487 | 13.0 | 13 | 0.1812 | 0.9688 | | 0.4487 | 14.0 | 14 | 0.1785 | 0.9688 | | 0.4487 | 15.0 | 15 | 0.1765 | 0.9688 | | 0.4487 | 16.0 | 16 | 0.1754 | 0.9688 | | 0.4487 | 17.0 | 17 | 0.1752 | 0.9688 | | 0.4487 | 18.0 | 18 | 0.1758 | 0.9688 | | 0.4487 | 19.0 | 19 | 0.1772 | 0.9688 | | 0.4206 | 20.0 | 20 | 0.1797 | 0.9688 | | 0.4206 | 21.0 | 21 | 0.1836 | 0.9688 | | 0.4206 | 22.0 | 22 | 0.1891 | 0.9688 | | 0.4206 | 23.0 | 23 | 0.1962 | 0.9375 | | 0.4206 | 24.0 | 24 | 0.2053 | 0.9375 | | 0.4206 | 25.0 | 25 | 0.2167 | 0.9375 | | 0.4206 | 26.0 | 26 | 0.2280 | 0.9375 | | 0.4206 | 27.0 | 27 | 0.2410 | 0.9375 | | 0.4206 | 28.0 | 28 | 0.2550 | 0.9375 | | 0.4206 | 29.0 | 29 | 0.2667 | 0.9375 | | 0.214 | 30.0 | 30 | 0.2789 | 0.9375 | | 0.214 | 31.0 | 31 | 0.2895 | 0.9375 | | 0.214 | 32.0 | 32 | 0.2970 | 0.9375 | | 0.214 | 33.0 | 33 | 0.3027 | 0.9375 | | 0.214 | 34.0 | 34 | 0.3057 | 0.9375 | | 0.214 | 35.0 | 35 | 0.3061 | 0.9375 | | 0.214 | 36.0 | 36 | 0.3038 | 0.9375 | | 0.214 | 37.0 | 37 | 0.2990 | 0.9375 | | 0.214 | 38.0 | 38 | 0.2912 | 0.9375 | | 0.214 | 39.0 | 39 | 0.2808 | 0.9375 | | 0.1164 | 40.0 | 40 | 0.2672 | 0.9375 | | 0.1164 | 41.0 | 41 | 0.2505 | 0.9375 | | 0.1164 | 42.0 | 42 | 0.2319 | 0.9375 | | 0.1164 | 43.0 | 43 | 0.2172 | 0.9375 | | 0.1164 | 44.0 | 44 | 0.2071 | 0.9375 | | 0.1164 | 45.0 | 45 | 0.1979 | 0.9375 | | 0.1164 | 46.0 | 46 | 0.1928 | 0.9375 | | 0.1164 | 47.0 | 47 | 0.1884 | 0.9688 | | 0.1164 | 48.0 | 48 | 0.1868 | 0.9688 | | 0.1164 | 49.0 | 49 | 0.1871 | 0.9688 | | 0.032 | 50.0 | 50 | 0.1898 | 0.9375 | | 0.032 | 51.0 | 51 | 0.1953 | 0.9375 | | 0.032 | 52.0 | 52 | 0.2052 | 0.9375 | | 0.032 | 53.0 | 53 | 0.2205 | 0.9375 | | 0.032 | 54.0 | 54 | 0.2332 | 0.9375 | | 0.032 | 55.0 | 55 | 0.2420 | 0.9375 | | 0.032 | 56.0 | 56 | 0.2458 | 0.9375 | | 0.032 | 57.0 | 57 | 0.2462 | 0.9375 | | 0.032 | 58.0 | 58 | 0.2419 | 0.9375 | | 0.032 | 59.0 | 59 | 0.2325 | 0.9375 | | 0.0168 | 60.0 | 60 | 0.2284 | 0.9375 | | 0.0168 | 61.0 | 61 | 0.2304 | 0.9375 | | 0.0168 | 62.0 | 62 | 0.2372 | 0.9375 | | 0.0168 | 63.0 | 63 | 0.2469 | 0.9375 | | 0.0168 | 64.0 | 64 | 0.2518 | 0.9375 | | 0.0168 | 65.0 | 65 | 0.2557 | 0.9375 | | 0.0168 | 66.0 | 66 | 0.2580 | 0.9375 | | 0.0168 | 67.0 | 67 | 0.2535 | 0.9375 | | 0.0168 | 68.0 | 68 | 0.2500 | 0.9375 | | 0.0168 | 69.0 | 69 | 0.2480 | 0.9375 | | 0.0063 | 70.0 | 70 | 0.2459 | 0.9375 | | 0.0063 | 71.0 | 71 | 0.2437 | 0.9375 | | 0.0063 | 72.0 | 72 | 0.2393 | 0.9375 | | 0.0063 | 73.0 | 73 | 0.2342 | 0.9375 | | 0.0063 | 74.0 | 74 | 0.2297 | 0.9375 | | 0.0063 | 75.0 | 75 | 0.2264 | 0.9375 | | 0.0063 | 76.0 | 76 | 0.2254 | 0.9375 | | 0.0063 | 77.0 | 77 | 0.2250 | 0.9375 | | 0.0063 | 78.0 | 78 | 0.2243 | 0.9375 | | 0.0063 | 79.0 | 79 | 0.2238 | 0.9375 | | 0.0041 | 80.0 | 80 | 0.2226 | 0.9375 | | 0.0041 | 81.0 | 81 | 0.2221 | 0.9375 | | 0.0041 | 82.0 | 82 | 0.2227 | 0.9375 | | 0.0041 | 83.0 | 83 | 0.2234 | 0.9375 | | 0.0041 | 84.0 | 84 | 0.2244 | 0.9375 | | 0.0041 | 85.0 | 85 | 0.2257 | 0.9375 | | 0.0041 | 86.0 | 86 | 0.2263 | 0.9375 | | 0.0041 | 87.0 | 87 | 0.2270 | 0.9375 | | 0.0041 | 88.0 | 88 | 0.2279 | 0.9375 | | 0.0041 | 89.0 | 89 | 0.2288 | 0.9375 | | 0.0028 | 90.0 | 90 | 0.2297 | 0.9375 | | 0.0028 | 91.0 | 91 | 0.2313 | 0.9375 | | 0.0028 | 92.0 | 92 | 0.2333 | 0.9375 | | 0.0028 | 93.0 | 93 | 0.2355 | 0.9375 | | 0.0028 | 94.0 | 94 | 0.2377 | 0.9375 | | 0.0028 | 95.0 | 95 | 0.2406 | 0.9375 | | 0.0028 | 96.0 | 96 | 0.2436 | 0.9375 | | 0.0028 | 97.0 | 97 | 0.2486 | 0.9375 | | 0.0028 | 98.0 | 98 | 0.2527 | 0.9375 | | 0.0028 | 99.0 | 99 | 0.2570 | 0.9375 | | 0.0022 | 100.0 | 100 | 0.2612 | 0.9375 | | 0.0022 | 101.0 | 101 | 0.2649 | 0.9375 | | 0.0022 | 102.0 | 102 | 0.2684 | 0.9375 | | 0.0022 | 103.0 | 103 | 0.2722 | 0.9375 | | 0.0022 | 104.0 | 104 | 0.2756 | 0.9375 | | 0.0022 | 105.0 | 105 | 0.2787 | 0.9375 | | 0.0022 | 106.0 | 106 | 0.2775 | 0.9375 | | 0.0022 | 107.0 | 107 | 0.2748 | 0.9375 | | 0.0022 | 108.0 | 108 | 0.2719 | 0.9375 | | 0.0022 | 109.0 | 109 | 0.2684 | 0.9375 | | 0.0018 | 110.0 | 110 | 0.2651 | 0.9375 | | 0.0018 | 111.0 | 111 | 0.2619 | 0.9375 | | 0.0018 | 112.0 | 112 | 0.2589 | 0.9375 | | 0.0018 | 113.0 | 113 | 0.2561 | 0.9375 | | 0.0018 | 114.0 | 114 | 0.2537 | 0.9375 | | 0.0018 | 115.0 | 115 | 0.2517 | 0.9375 | | 0.0018 | 116.0 | 116 | 0.2499 | 0.9375 | | 0.0018 | 117.0 | 117 | 0.2491 | 0.9375 | | 0.0018 | 118.0 | 118 | 0.2489 | 0.9375 | | 0.0018 | 119.0 | 119 | 0.2487 | 0.9375 | | 0.0015 | 120.0 | 120 | 0.2483 | 0.9375 | | 0.0015 | 121.0 | 121 | 0.2483 | 0.9375 | | 0.0015 | 122.0 | 122 | 0.2483 | 0.9375 | | 0.0015 | 123.0 | 123 | 0.2485 | 0.9375 | | 0.0015 | 124.0 | 124 | 0.2488 | 0.9375 | | 0.0015 | 125.0 | 125 | 0.2490 | 0.9375 | | 0.0015 | 126.0 | 126 | 0.2493 | 0.9375 | | 0.0015 | 127.0 | 127 | 0.2497 | 0.9375 | | 0.0015 | 128.0 | 128 | 0.2508 | 0.9375 | | 0.0015 | 129.0 | 129 | 0.2507 | 0.9375 | | 0.0013 | 130.0 | 130 | 0.2507 | 0.9375 | | 0.0013 | 131.0 | 131 | 0.2511 | 0.9375 | | 0.0013 | 132.0 | 132 | 0.2510 | 0.9375 | | 0.0013 | 133.0 | 133 | 0.2514 | 0.9375 | | 0.0013 | 134.0 | 134 | 0.2520 | 0.9375 | | 0.0013 | 135.0 | 135 | 0.2527 | 0.9375 | | 0.0013 | 136.0 | 136 | 0.2537 | 0.9375 | | 0.0013 | 137.0 | 137 | 0.2547 | 0.9375 | | 0.0013 | 138.0 | 138 | 0.2556 | 0.9375 | | 0.0013 | 139.0 | 139 | 0.2564 | 0.9375 | | 0.0011 | 140.0 | 140 | 0.2574 | 0.9375 | | 0.0011 | 141.0 | 141 | 0.2587 | 0.9375 | | 0.0011 | 142.0 | 142 | 0.2600 | 0.9375 | | 0.0011 | 143.0 | 143 | 0.2614 | 0.9375 | | 0.0011 | 144.0 | 144 | 0.2626 | 0.9375 | | 0.0011 | 145.0 | 145 | 0.2638 | 0.9375 | | 0.0011 | 146.0 | 146 | 0.2654 | 0.9375 | | 0.0011 | 147.0 | 147 | 0.2674 | 0.9375 | | 0.0011 | 148.0 | 148 | 0.2692 | 0.9375 | | 0.0011 | 149.0 | 149 | 0.2706 | 0.9375 | | 0.001 | 150.0 | 150 | 0.2717 | 0.9375 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3