simonycl commited on
Commit
08c161c
1 Parent(s): 66e0f2c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +155 -155
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- license: apache-2.0
3
- base_model: bert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  metrics:
@@ -15,10 +15,10 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  # best_model-yelp_polarity-16-87
17
 
18
- This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.2312
21
- - Accuracy: 0.9062
22
 
23
  ## Model description
24
 
@@ -50,156 +50,156 @@ The following hyperparameters were used during training:
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
- | No log | 1.0 | 1 | 0.2005 | 0.9062 |
54
- | No log | 2.0 | 2 | 0.2005 | 0.9062 |
55
- | No log | 3.0 | 3 | 0.2004 | 0.9062 |
56
- | No log | 4.0 | 4 | 0.2004 | 0.9062 |
57
- | No log | 5.0 | 5 | 0.2002 | 0.9375 |
58
- | No log | 6.0 | 6 | 0.2003 | 0.9375 |
59
- | No log | 7.0 | 7 | 0.1999 | 0.9375 |
60
- | No log | 8.0 | 8 | 0.1995 | 0.9375 |
61
- | No log | 9.0 | 9 | 0.1989 | 0.9375 |
62
- | 0.1947 | 10.0 | 10 | 0.1982 | 0.9375 |
63
- | 0.1947 | 11.0 | 11 | 0.1974 | 0.9375 |
64
- | 0.1947 | 12.0 | 12 | 0.1966 | 0.9375 |
65
- | 0.1947 | 13.0 | 13 | 0.1955 | 0.9375 |
66
- | 0.1947 | 14.0 | 14 | 0.1944 | 0.9375 |
67
- | 0.1947 | 15.0 | 15 | 0.1931 | 0.9375 |
68
- | 0.1947 | 16.0 | 16 | 0.1915 | 0.9375 |
69
- | 0.1947 | 17.0 | 17 | 0.1897 | 0.9375 |
70
- | 0.1947 | 18.0 | 18 | 0.1876 | 0.9375 |
71
- | 0.1947 | 19.0 | 19 | 0.1858 | 0.9375 |
72
- | 0.1582 | 20.0 | 20 | 0.1838 | 0.9375 |
73
- | 0.1582 | 21.0 | 21 | 0.1817 | 0.9375 |
74
- | 0.1582 | 22.0 | 22 | 0.1794 | 0.9375 |
75
- | 0.1582 | 23.0 | 23 | 0.1771 | 0.9375 |
76
- | 0.1582 | 24.0 | 24 | 0.1746 | 0.9688 |
77
- | 0.1582 | 25.0 | 25 | 0.1720 | 0.9688 |
78
- | 0.1582 | 26.0 | 26 | 0.1694 | 0.9688 |
79
- | 0.1582 | 27.0 | 27 | 0.1673 | 0.9688 |
80
- | 0.1582 | 28.0 | 28 | 0.1653 | 0.9688 |
81
- | 0.1582 | 29.0 | 29 | 0.1632 | 0.9688 |
82
- | 0.1271 | 30.0 | 30 | 0.1611 | 0.9688 |
83
- | 0.1271 | 31.0 | 31 | 0.1590 | 0.9688 |
84
- | 0.1271 | 32.0 | 32 | 0.1572 | 0.9688 |
85
- | 0.1271 | 33.0 | 33 | 0.1559 | 0.9688 |
86
- | 0.1271 | 34.0 | 34 | 0.1552 | 0.9688 |
87
- | 0.1271 | 35.0 | 35 | 0.1545 | 0.9688 |
88
- | 0.1271 | 36.0 | 36 | 0.1540 | 0.9688 |
89
- | 0.1271 | 37.0 | 37 | 0.1539 | 0.9688 |
90
- | 0.1271 | 38.0 | 38 | 0.1541 | 0.9688 |
91
- | 0.1271 | 39.0 | 39 | 0.1535 | 0.9375 |
92
- | 0.078 | 40.0 | 40 | 0.1524 | 0.9375 |
93
- | 0.078 | 41.0 | 41 | 0.1520 | 0.9375 |
94
- | 0.078 | 42.0 | 42 | 0.1523 | 0.9375 |
95
- | 0.078 | 43.0 | 43 | 0.1542 | 0.9375 |
96
- | 0.078 | 44.0 | 44 | 0.1574 | 0.9375 |
97
- | 0.078 | 45.0 | 45 | 0.1593 | 0.9375 |
98
- | 0.078 | 46.0 | 46 | 0.1619 | 0.9062 |
99
- | 0.078 | 47.0 | 47 | 0.1642 | 0.9062 |
100
- | 0.078 | 48.0 | 48 | 0.1674 | 0.9062 |
101
- | 0.078 | 49.0 | 49 | 0.1718 | 0.9062 |
102
- | 0.0473 | 50.0 | 50 | 0.1738 | 0.9062 |
103
- | 0.0473 | 51.0 | 51 | 0.1777 | 0.9062 |
104
- | 0.0473 | 52.0 | 52 | 0.1819 | 0.9062 |
105
- | 0.0473 | 53.0 | 53 | 0.1856 | 0.9062 |
106
- | 0.0473 | 54.0 | 54 | 0.1894 | 0.9062 |
107
- | 0.0473 | 55.0 | 55 | 0.1926 | 0.9062 |
108
- | 0.0473 | 56.0 | 56 | 0.1938 | 0.9062 |
109
- | 0.0473 | 57.0 | 57 | 0.1939 | 0.9062 |
110
- | 0.0473 | 58.0 | 58 | 0.1934 | 0.9062 |
111
- | 0.0473 | 59.0 | 59 | 0.1925 | 0.9062 |
112
- | 0.0362 | 60.0 | 60 | 0.1922 | 0.9062 |
113
- | 0.0362 | 61.0 | 61 | 0.1921 | 0.9062 |
114
- | 0.0362 | 62.0 | 62 | 0.1915 | 0.9062 |
115
- | 0.0362 | 63.0 | 63 | 0.1912 | 0.9062 |
116
- | 0.0362 | 64.0 | 64 | 0.1917 | 0.9062 |
117
- | 0.0362 | 65.0 | 65 | 0.1929 | 0.9062 |
118
- | 0.0362 | 66.0 | 66 | 0.1935 | 0.9062 |
119
- | 0.0362 | 67.0 | 67 | 0.1918 | 0.9062 |
120
- | 0.0362 | 68.0 | 68 | 0.1895 | 0.9062 |
121
- | 0.0362 | 69.0 | 69 | 0.1869 | 0.9062 |
122
- | 0.0304 | 70.0 | 70 | 0.1843 | 0.9062 |
123
- | 0.0304 | 71.0 | 71 | 0.1824 | 0.9062 |
124
- | 0.0304 | 72.0 | 72 | 0.1812 | 0.9062 |
125
- | 0.0304 | 73.0 | 73 | 0.1802 | 0.9062 |
126
- | 0.0304 | 74.0 | 74 | 0.1799 | 0.9062 |
127
- | 0.0304 | 75.0 | 75 | 0.1796 | 0.9062 |
128
- | 0.0304 | 76.0 | 76 | 0.1804 | 0.9062 |
129
- | 0.0304 | 77.0 | 77 | 0.1816 | 0.9062 |
130
- | 0.0304 | 78.0 | 78 | 0.1826 | 0.9062 |
131
- | 0.0304 | 79.0 | 79 | 0.1840 | 0.9062 |
132
- | 0.0245 | 80.0 | 80 | 0.1860 | 0.9062 |
133
- | 0.0245 | 81.0 | 81 | 0.1875 | 0.9062 |
134
- | 0.0245 | 82.0 | 82 | 0.1904 | 0.9062 |
135
- | 0.0245 | 83.0 | 83 | 0.1929 | 0.9062 |
136
- | 0.0245 | 84.0 | 84 | 0.1956 | 0.9062 |
137
- | 0.0245 | 85.0 | 85 | 0.1981 | 0.9062 |
138
- | 0.0245 | 86.0 | 86 | 0.2004 | 0.9062 |
139
- | 0.0245 | 87.0 | 87 | 0.2029 | 0.9062 |
140
- | 0.0245 | 88.0 | 88 | 0.2063 | 0.9062 |
141
- | 0.0245 | 89.0 | 89 | 0.2098 | 0.9062 |
142
- | 0.0218 | 90.0 | 90 | 0.2121 | 0.9062 |
143
- | 0.0218 | 91.0 | 91 | 0.2141 | 0.9062 |
144
- | 0.0218 | 92.0 | 92 | 0.2149 | 0.9062 |
145
- | 0.0218 | 93.0 | 93 | 0.2152 | 0.9062 |
146
- | 0.0218 | 94.0 | 94 | 0.2155 | 0.9062 |
147
- | 0.0218 | 95.0 | 95 | 0.2154 | 0.9062 |
148
- | 0.0218 | 96.0 | 96 | 0.2152 | 0.9062 |
149
- | 0.0218 | 97.0 | 97 | 0.2140 | 0.9062 |
150
- | 0.0218 | 98.0 | 98 | 0.2132 | 0.9062 |
151
- | 0.0218 | 99.0 | 99 | 0.2128 | 0.9062 |
152
- | 0.0182 | 100.0 | 100 | 0.2133 | 0.9062 |
153
- | 0.0182 | 101.0 | 101 | 0.2091 | 0.9062 |
154
- | 0.0182 | 102.0 | 102 | 0.2060 | 0.9062 |
155
- | 0.0182 | 103.0 | 103 | 0.2031 | 0.9062 |
156
- | 0.0182 | 104.0 | 104 | 0.2002 | 0.9062 |
157
- | 0.0182 | 105.0 | 105 | 0.1975 | 0.9062 |
158
- | 0.0182 | 106.0 | 106 | 0.1956 | 0.9062 |
159
- | 0.0182 | 107.0 | 107 | 0.1937 | 0.9062 |
160
- | 0.0182 | 108.0 | 108 | 0.1922 | 0.9062 |
161
- | 0.0182 | 109.0 | 109 | 0.1916 | 0.9062 |
162
- | 0.0164 | 110.0 | 110 | 0.1912 | 0.9062 |
163
- | 0.0164 | 111.0 | 111 | 0.1884 | 0.9062 |
164
- | 0.0164 | 112.0 | 112 | 0.1859 | 0.9062 |
165
- | 0.0164 | 113.0 | 113 | 0.1858 | 0.9062 |
166
- | 0.0164 | 114.0 | 114 | 0.1863 | 0.9062 |
167
- | 0.0164 | 115.0 | 115 | 0.1877 | 0.9062 |
168
- | 0.0164 | 116.0 | 116 | 0.1900 | 0.9062 |
169
- | 0.0164 | 117.0 | 117 | 0.1921 | 0.9062 |
170
- | 0.0164 | 118.0 | 118 | 0.1941 | 0.9062 |
171
- | 0.0164 | 119.0 | 119 | 0.1969 | 0.9062 |
172
- | 0.0142 | 120.0 | 120 | 0.2010 | 0.9062 |
173
- | 0.0142 | 121.0 | 121 | 0.2051 | 0.9062 |
174
- | 0.0142 | 122.0 | 122 | 0.2085 | 0.9062 |
175
- | 0.0142 | 123.0 | 123 | 0.2112 | 0.9062 |
176
- | 0.0142 | 124.0 | 124 | 0.2140 | 0.9062 |
177
- | 0.0142 | 125.0 | 125 | 0.2164 | 0.9062 |
178
- | 0.0142 | 126.0 | 126 | 0.2188 | 0.9062 |
179
- | 0.0142 | 127.0 | 127 | 0.2217 | 0.9062 |
180
- | 0.0142 | 128.0 | 128 | 0.2248 | 0.9062 |
181
- | 0.0142 | 129.0 | 129 | 0.2276 | 0.9062 |
182
- | 0.0122 | 130.0 | 130 | 0.2296 | 0.9062 |
183
- | 0.0122 | 131.0 | 131 | 0.2313 | 0.9062 |
184
- | 0.0122 | 132.0 | 132 | 0.2325 | 0.9062 |
185
- | 0.0122 | 133.0 | 133 | 0.2332 | 0.9062 |
186
- | 0.0122 | 134.0 | 134 | 0.2334 | 0.9062 |
187
- | 0.0122 | 135.0 | 135 | 0.2332 | 0.9062 |
188
- | 0.0122 | 136.0 | 136 | 0.2302 | 0.9062 |
189
- | 0.0122 | 137.0 | 137 | 0.2272 | 0.9062 |
190
- | 0.0122 | 138.0 | 138 | 0.2244 | 0.9062 |
191
- | 0.0122 | 139.0 | 139 | 0.2223 | 0.9062 |
192
- | 0.0105 | 140.0 | 140 | 0.2212 | 0.9062 |
193
- | 0.0105 | 141.0 | 141 | 0.2212 | 0.9062 |
194
- | 0.0105 | 142.0 | 142 | 0.2220 | 0.9062 |
195
- | 0.0105 | 143.0 | 143 | 0.2230 | 0.9062 |
196
- | 0.0105 | 144.0 | 144 | 0.2243 | 0.9062 |
197
- | 0.0105 | 145.0 | 145 | 0.2258 | 0.9062 |
198
- | 0.0105 | 146.0 | 146 | 0.2277 | 0.9062 |
199
- | 0.0105 | 147.0 | 147 | 0.2288 | 0.9062 |
200
- | 0.0105 | 148.0 | 148 | 0.2300 | 0.9062 |
201
- | 0.0105 | 149.0 | 149 | 0.2306 | 0.9062 |
202
- | 0.0092 | 150.0 | 150 | 0.2312 | 0.9062 |
203
 
204
 
205
  ### Framework versions
 
1
  ---
2
+ license: mit
3
+ base_model: roberta-base
4
  tags:
5
  - generated_from_trainer
6
  metrics:
 
15
 
16
  # best_model-yelp_polarity-16-87
17
 
18
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.0002
21
+ - Accuracy: 1.0
22
 
23
  ## Model description
24
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | No log | 1.0 | 1 | 0.1404 | 0.9375 |
54
+ | No log | 2.0 | 2 | 0.1385 | 0.9375 |
55
+ | No log | 3.0 | 3 | 0.1343 | 0.9375 |
56
+ | No log | 4.0 | 4 | 0.1277 | 0.9375 |
57
+ | No log | 5.0 | 5 | 0.1188 | 0.9375 |
58
+ | No log | 6.0 | 6 | 0.1090 | 0.9688 |
59
+ | No log | 7.0 | 7 | 0.0970 | 0.9688 |
60
+ | No log | 8.0 | 8 | 0.0843 | 0.9688 |
61
+ | No log | 9.0 | 9 | 0.0717 | 0.9688 |
62
+ | 0.0032 | 10.0 | 10 | 0.0585 | 0.9688 |
63
+ | 0.0032 | 11.0 | 11 | 0.0456 | 0.9688 |
64
+ | 0.0032 | 12.0 | 12 | 0.0341 | 0.9688 |
65
+ | 0.0032 | 13.0 | 13 | 0.0225 | 1.0 |
66
+ | 0.0032 | 14.0 | 14 | 0.0142 | 1.0 |
67
+ | 0.0032 | 15.0 | 15 | 0.0081 | 1.0 |
68
+ | 0.0032 | 16.0 | 16 | 0.0044 | 1.0 |
69
+ | 0.0032 | 17.0 | 17 | 0.0026 | 1.0 |
70
+ | 0.0032 | 18.0 | 18 | 0.0017 | 1.0 |
71
+ | 0.0032 | 19.0 | 19 | 0.0013 | 1.0 |
72
+ | 0.0013 | 20.0 | 20 | 0.0010 | 1.0 |
73
+ | 0.0013 | 21.0 | 21 | 0.0009 | 1.0 |
74
+ | 0.0013 | 22.0 | 22 | 0.0008 | 1.0 |
75
+ | 0.0013 | 23.0 | 23 | 0.0007 | 1.0 |
76
+ | 0.0013 | 24.0 | 24 | 0.0007 | 1.0 |
77
+ | 0.0013 | 25.0 | 25 | 0.0006 | 1.0 |
78
+ | 0.0013 | 26.0 | 26 | 0.0006 | 1.0 |
79
+ | 0.0013 | 27.0 | 27 | 0.0006 | 1.0 |
80
+ | 0.0013 | 28.0 | 28 | 0.0006 | 1.0 |
81
+ | 0.0013 | 29.0 | 29 | 0.0006 | 1.0 |
82
+ | 0.0012 | 30.0 | 30 | 0.0006 | 1.0 |
83
+ | 0.0012 | 31.0 | 31 | 0.0006 | 1.0 |
84
+ | 0.0012 | 32.0 | 32 | 0.0006 | 1.0 |
85
+ | 0.0012 | 33.0 | 33 | 0.0006 | 1.0 |
86
+ | 0.0012 | 34.0 | 34 | 0.0006 | 1.0 |
87
+ | 0.0012 | 35.0 | 35 | 0.0006 | 1.0 |
88
+ | 0.0012 | 36.0 | 36 | 0.0006 | 1.0 |
89
+ | 0.0012 | 37.0 | 37 | 0.0006 | 1.0 |
90
+ | 0.0012 | 38.0 | 38 | 0.0006 | 1.0 |
91
+ | 0.0012 | 39.0 | 39 | 0.0005 | 1.0 |
92
+ | 0.0009 | 40.0 | 40 | 0.0005 | 1.0 |
93
+ | 0.0009 | 41.0 | 41 | 0.0005 | 1.0 |
94
+ | 0.0009 | 42.0 | 42 | 0.0006 | 1.0 |
95
+ | 0.0009 | 43.0 | 43 | 0.0006 | 1.0 |
96
+ | 0.0009 | 44.0 | 44 | 0.0006 | 1.0 |
97
+ | 0.0009 | 45.0 | 45 | 0.0006 | 1.0 |
98
+ | 0.0009 | 46.0 | 46 | 0.0006 | 1.0 |
99
+ | 0.0009 | 47.0 | 47 | 0.0006 | 1.0 |
100
+ | 0.0009 | 48.0 | 48 | 0.0006 | 1.0 |
101
+ | 0.0009 | 49.0 | 49 | 0.0006 | 1.0 |
102
+ | 0.0008 | 50.0 | 50 | 0.0006 | 1.0 |
103
+ | 0.0008 | 51.0 | 51 | 0.0006 | 1.0 |
104
+ | 0.0008 | 52.0 | 52 | 0.0006 | 1.0 |
105
+ | 0.0008 | 53.0 | 53 | 0.0006 | 1.0 |
106
+ | 0.0008 | 54.0 | 54 | 0.0006 | 1.0 |
107
+ | 0.0008 | 55.0 | 55 | 0.0006 | 1.0 |
108
+ | 0.0008 | 56.0 | 56 | 0.0006 | 1.0 |
109
+ | 0.0008 | 57.0 | 57 | 0.0006 | 1.0 |
110
+ | 0.0008 | 58.0 | 58 | 0.0007 | 1.0 |
111
+ | 0.0008 | 59.0 | 59 | 0.0007 | 1.0 |
112
+ | 0.0007 | 60.0 | 60 | 0.0007 | 1.0 |
113
+ | 0.0007 | 61.0 | 61 | 0.0007 | 1.0 |
114
+ | 0.0007 | 62.0 | 62 | 0.0007 | 1.0 |
115
+ | 0.0007 | 63.0 | 63 | 0.0007 | 1.0 |
116
+ | 0.0007 | 64.0 | 64 | 0.0007 | 1.0 |
117
+ | 0.0007 | 65.0 | 65 | 0.0007 | 1.0 |
118
+ | 0.0007 | 66.0 | 66 | 0.0007 | 1.0 |
119
+ | 0.0007 | 67.0 | 67 | 0.0007 | 1.0 |
120
+ | 0.0007 | 68.0 | 68 | 0.0006 | 1.0 |
121
+ | 0.0007 | 69.0 | 69 | 0.0006 | 1.0 |
122
+ | 0.0007 | 70.0 | 70 | 0.0006 | 1.0 |
123
+ | 0.0007 | 71.0 | 71 | 0.0006 | 1.0 |
124
+ | 0.0007 | 72.0 | 72 | 0.0006 | 1.0 |
125
+ | 0.0007 | 73.0 | 73 | 0.0006 | 1.0 |
126
+ | 0.0007 | 74.0 | 74 | 0.0006 | 1.0 |
127
+ | 0.0007 | 75.0 | 75 | 0.0006 | 1.0 |
128
+ | 0.0007 | 76.0 | 76 | 0.0006 | 1.0 |
129
+ | 0.0007 | 77.0 | 77 | 0.0006 | 1.0 |
130
+ | 0.0007 | 78.0 | 78 | 0.0006 | 1.0 |
131
+ | 0.0007 | 79.0 | 79 | 0.0006 | 1.0 |
132
+ | 0.0006 | 80.0 | 80 | 0.0006 | 1.0 |
133
+ | 0.0006 | 81.0 | 81 | 0.0006 | 1.0 |
134
+ | 0.0006 | 82.0 | 82 | 0.0006 | 1.0 |
135
+ | 0.0006 | 83.0 | 83 | 0.0006 | 1.0 |
136
+ | 0.0006 | 84.0 | 84 | 0.0006 | 1.0 |
137
+ | 0.0006 | 85.0 | 85 | 0.0005 | 1.0 |
138
+ | 0.0006 | 86.0 | 86 | 0.0005 | 1.0 |
139
+ | 0.0006 | 87.0 | 87 | 0.0005 | 1.0 |
140
+ | 0.0006 | 88.0 | 88 | 0.0005 | 1.0 |
141
+ | 0.0006 | 89.0 | 89 | 0.0005 | 1.0 |
142
+ | 0.0005 | 90.0 | 90 | 0.0005 | 1.0 |
143
+ | 0.0005 | 91.0 | 91 | 0.0005 | 1.0 |
144
+ | 0.0005 | 92.0 | 92 | 0.0005 | 1.0 |
145
+ | 0.0005 | 93.0 | 93 | 0.0005 | 1.0 |
146
+ | 0.0005 | 94.0 | 94 | 0.0005 | 1.0 |
147
+ | 0.0005 | 95.0 | 95 | 0.0005 | 1.0 |
148
+ | 0.0005 | 96.0 | 96 | 0.0004 | 1.0 |
149
+ | 0.0005 | 97.0 | 97 | 0.0004 | 1.0 |
150
+ | 0.0005 | 98.0 | 98 | 0.0004 | 1.0 |
151
+ | 0.0005 | 99.0 | 99 | 0.0004 | 1.0 |
152
+ | 0.0005 | 100.0 | 100 | 0.0004 | 1.0 |
153
+ | 0.0005 | 101.0 | 101 | 0.0004 | 1.0 |
154
+ | 0.0005 | 102.0 | 102 | 0.0004 | 1.0 |
155
+ | 0.0005 | 103.0 | 103 | 0.0004 | 1.0 |
156
+ | 0.0005 | 104.0 | 104 | 0.0004 | 1.0 |
157
+ | 0.0005 | 105.0 | 105 | 0.0004 | 1.0 |
158
+ | 0.0005 | 106.0 | 106 | 0.0003 | 1.0 |
159
+ | 0.0005 | 107.0 | 107 | 0.0003 | 1.0 |
160
+ | 0.0005 | 108.0 | 108 | 0.0003 | 1.0 |
161
+ | 0.0005 | 109.0 | 109 | 0.0003 | 1.0 |
162
+ | 0.0004 | 110.0 | 110 | 0.0003 | 1.0 |
163
+ | 0.0004 | 111.0 | 111 | 0.0003 | 1.0 |
164
+ | 0.0004 | 112.0 | 112 | 0.0003 | 1.0 |
165
+ | 0.0004 | 113.0 | 113 | 0.0003 | 1.0 |
166
+ | 0.0004 | 114.0 | 114 | 0.0003 | 1.0 |
167
+ | 0.0004 | 115.0 | 115 | 0.0003 | 1.0 |
168
+ | 0.0004 | 116.0 | 116 | 0.0003 | 1.0 |
169
+ | 0.0004 | 117.0 | 117 | 0.0003 | 1.0 |
170
+ | 0.0004 | 118.0 | 118 | 0.0003 | 1.0 |
171
+ | 0.0004 | 119.0 | 119 | 0.0003 | 1.0 |
172
+ | 0.0004 | 120.0 | 120 | 0.0003 | 1.0 |
173
+ | 0.0004 | 121.0 | 121 | 0.0003 | 1.0 |
174
+ | 0.0004 | 122.0 | 122 | 0.0003 | 1.0 |
175
+ | 0.0004 | 123.0 | 123 | 0.0003 | 1.0 |
176
+ | 0.0004 | 124.0 | 124 | 0.0003 | 1.0 |
177
+ | 0.0004 | 125.0 | 125 | 0.0003 | 1.0 |
178
+ | 0.0004 | 126.0 | 126 | 0.0003 | 1.0 |
179
+ | 0.0004 | 127.0 | 127 | 0.0003 | 1.0 |
180
+ | 0.0004 | 128.0 | 128 | 0.0003 | 1.0 |
181
+ | 0.0004 | 129.0 | 129 | 0.0003 | 1.0 |
182
+ | 0.0003 | 130.0 | 130 | 0.0003 | 1.0 |
183
+ | 0.0003 | 131.0 | 131 | 0.0003 | 1.0 |
184
+ | 0.0003 | 132.0 | 132 | 0.0003 | 1.0 |
185
+ | 0.0003 | 133.0 | 133 | 0.0003 | 1.0 |
186
+ | 0.0003 | 134.0 | 134 | 0.0003 | 1.0 |
187
+ | 0.0003 | 135.0 | 135 | 0.0002 | 1.0 |
188
+ | 0.0003 | 136.0 | 136 | 0.0002 | 1.0 |
189
+ | 0.0003 | 137.0 | 137 | 0.0002 | 1.0 |
190
+ | 0.0003 | 138.0 | 138 | 0.0002 | 1.0 |
191
+ | 0.0003 | 139.0 | 139 | 0.0002 | 1.0 |
192
+ | 0.0003 | 140.0 | 140 | 0.0002 | 1.0 |
193
+ | 0.0003 | 141.0 | 141 | 0.0002 | 1.0 |
194
+ | 0.0003 | 142.0 | 142 | 0.0002 | 1.0 |
195
+ | 0.0003 | 143.0 | 143 | 0.0002 | 1.0 |
196
+ | 0.0003 | 144.0 | 144 | 0.0002 | 1.0 |
197
+ | 0.0003 | 145.0 | 145 | 0.0002 | 1.0 |
198
+ | 0.0003 | 146.0 | 146 | 0.0002 | 1.0 |
199
+ | 0.0003 | 147.0 | 147 | 0.0002 | 1.0 |
200
+ | 0.0003 | 148.0 | 148 | 0.0002 | 1.0 |
201
+ | 0.0003 | 149.0 | 149 | 0.0002 | 1.0 |
202
+ | 0.0003 | 150.0 | 150 | 0.0002 | 1.0 |
203
 
204
 
205
  ### Framework versions