--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-sst-2-32-13-smoothed results: [] --- # roberta-base-sst-2-32-13-smoothed This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6023 - Accuracy: 0.8906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 75 - label_smoothing_factor: 0.45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 0.6943 | 0.5 | | No log | 2.0 | 4 | 0.6942 | 0.5 | | No log | 3.0 | 6 | 0.6941 | 0.5 | | No log | 4.0 | 8 | 0.6939 | 0.5 | | 0.695 | 5.0 | 10 | 0.6937 | 0.5 | | 0.695 | 6.0 | 12 | 0.6935 | 0.5 | | 0.695 | 7.0 | 14 | 0.6933 | 0.5 | | 0.695 | 8.0 | 16 | 0.6932 | 0.5 | | 0.695 | 9.0 | 18 | 0.6930 | 0.5 | | 0.6959 | 10.0 | 20 | 0.6928 | 0.5 | | 0.6959 | 11.0 | 22 | 0.6927 | 0.5156 | | 0.6959 | 12.0 | 24 | 0.6926 | 0.6094 | | 0.6959 | 13.0 | 26 | 0.6925 | 0.5781 | | 0.6959 | 14.0 | 28 | 0.6923 | 0.5625 | | 0.6919 | 15.0 | 30 | 0.6922 | 0.5625 | | 0.6919 | 16.0 | 32 | 0.6920 | 0.5625 | | 0.6919 | 17.0 | 34 | 0.6917 | 0.6094 | | 0.6919 | 18.0 | 36 | 0.6913 | 0.5938 | | 0.6919 | 19.0 | 38 | 0.6908 | 0.6406 | | 0.6896 | 20.0 | 40 | 0.6902 | 0.7188 | | 0.6896 | 21.0 | 42 | 0.6892 | 0.7812 | | 0.6896 | 22.0 | 44 | 0.6878 | 0.6719 | | 0.6896 | 23.0 | 46 | 0.6855 | 0.7344 | | 0.6896 | 24.0 | 48 | 0.6816 | 0.7344 | | 0.6745 | 25.0 | 50 | 0.6737 | 0.7812 | | 0.6745 | 26.0 | 52 | 0.6571 | 0.8438 | | 0.6745 | 27.0 | 54 | 0.6290 | 0.8438 | | 0.6745 | 28.0 | 56 | 0.6161 | 0.8438 | | 0.6745 | 29.0 | 58 | 0.6202 | 0.8594 | | 0.5833 | 30.0 | 60 | 0.6190 | 0.875 | | 0.5833 | 31.0 | 62 | 0.6210 | 0.8594 | | 0.5833 | 32.0 | 64 | 0.6147 | 0.8594 | | 0.5833 | 33.0 | 66 | 0.6056 | 0.9062 | | 0.5833 | 34.0 | 68 | 0.6082 | 0.9062 | | 0.5433 | 35.0 | 70 | 0.6194 | 0.875 | | 0.5433 | 36.0 | 72 | 0.6035 | 0.9062 | | 0.5433 | 37.0 | 74 | 0.5986 | 0.8906 | | 0.5433 | 38.0 | 76 | 0.5970 | 0.8906 | | 0.5433 | 39.0 | 78 | 0.6038 | 0.8906 | | 0.5402 | 40.0 | 80 | 0.6061 | 0.8906 | | 0.5402 | 41.0 | 82 | 0.6018 | 0.8906 | | 0.5402 | 42.0 | 84 | 0.6013 | 0.9062 | | 0.5402 | 43.0 | 86 | 0.6018 | 0.8906 | | 0.5402 | 44.0 | 88 | 0.6086 | 0.8594 | | 0.5384 | 45.0 | 90 | 0.6100 | 0.8594 | | 0.5384 | 46.0 | 92 | 0.6044 | 0.8906 | | 0.5384 | 47.0 | 94 | 0.6022 | 0.8906 | | 0.5384 | 48.0 | 96 | 0.6007 | 0.8906 | | 0.5384 | 49.0 | 98 | 0.6003 | 0.8906 | | 0.5368 | 50.0 | 100 | 0.6013 | 0.8906 | | 0.5368 | 51.0 | 102 | 0.6012 | 0.8906 | | 0.5368 | 52.0 | 104 | 0.6006 | 0.8906 | | 0.5368 | 53.0 | 106 | 0.6005 | 0.8906 | | 0.5368 | 54.0 | 108 | 0.6011 | 0.8906 | | 0.537 | 55.0 | 110 | 0.6013 | 0.8906 | | 0.537 | 56.0 | 112 | 0.6014 | 0.8906 | | 0.537 | 57.0 | 114 | 0.6013 | 0.9062 | | 0.537 | 58.0 | 116 | 0.6011 | 0.9062 | | 0.537 | 59.0 | 118 | 0.6006 | 0.9062 | | 0.5364 | 60.0 | 120 | 0.5999 | 0.9062 | | 0.5364 | 61.0 | 122 | 0.5994 | 0.9062 | | 0.5364 | 62.0 | 124 | 0.5991 | 0.9062 | | 0.5364 | 63.0 | 126 | 0.5992 | 0.9062 | | 0.5364 | 64.0 | 128 | 0.5996 | 0.9062 | | 0.5362 | 65.0 | 130 | 0.6000 | 0.9062 | | 0.5362 | 66.0 | 132 | 0.6004 | 0.9062 | | 0.5362 | 67.0 | 134 | 0.6007 | 0.9062 | | 0.5362 | 68.0 | 136 | 0.6015 | 0.9062 | | 0.5362 | 69.0 | 138 | 0.6020 | 0.9062 | | 0.5362 | 70.0 | 140 | 0.6020 | 0.9062 | | 0.5362 | 71.0 | 142 | 0.6021 | 0.9062 | | 0.5362 | 72.0 | 144 | 0.6023 | 0.8906 | | 0.5362 | 73.0 | 146 | 0.6023 | 0.8906 | | 0.5362 | 74.0 | 148 | 0.6023 | 0.8906 | | 0.536 | 75.0 | 150 | 0.6023 | 0.8906 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3