--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: breeze-listen-dsw-base-kn results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: kn_in split: test args: kn_in metrics: - name: Wer type: wer value: 31.10585305105853 --- # breeze-listen-dsw-base-kn This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.2549 - Wer: 31.1059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.7196 | 1.03 | 100 | 0.5166 | 55.2130 | | 0.2769 | 2.06 | 200 | 0.2532 | 36.1594 | | 0.1896 | 4.02 | 300 | 0.2167 | 32.7298 | | 0.1384 | 5.04 | 400 | 0.2037 | 31.8356 | | 0.1099 | 7.0 | 500 | 0.2030 | 31.0560 | | 0.0707 | 8.03 | 600 | 0.2153 | 31.2453 | | 0.052 | 9.06 | 700 | 0.2258 | 30.6127 | | 0.0375 | 11.02 | 800 | 0.2413 | 31.2204 | | 0.0256 | 12.05 | 900 | 0.2507 | 31.0635 | | 0.0245 | 14.01 | 1000 | 0.2549 | 31.1059 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0