File size: 5,441 Bytes
1984ece d685831 5bf5699 c82cfae d685831 32ba3a3 d685831 5bf5699 d685831 5bf5699 d685831 5bf5699 d685831 5bf5699 d685831 5bf5699 d685831 5bf5699 1984ece d685831 6da6e92 d685831 32ba3a3 d685831 6da6e92 d685831 6da6e92 d685831 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
---
license: mit
datasets:
- squad_v2
- squad
- mrqa
- mbartolo/synQA
- adversarial_qa
- newsqa
- trivia_qa
- search_qa
- hotpot_qa
- natural_questions
language:
- en
library_name: transformers
pipeline_tag: question-answering
tags:
- deberta
- deberta-v3
- question-answering
- squad
- squad_v2
- mrqa
- synQA
- adversarial_qa
model-index:
- name: sjrhuschlee/deberta-v3-base-squad2-ext-v1
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 79.483
name: Exact Match
- type: f1
value: 82.343
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- type: exact_match
value: 85.894
name: Exact Match
- type: f1
value: 91.298
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: adversarial_qa
type: adversarial_qa
config: adversarialQA
split: validation
metrics:
- type: exact_match
value: 44.867
name: Exact Match
- type: f1
value: 55.996
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_adversarial
type: squad_adversarial
config: AddOneSent
split: validation
metrics:
- type: exact_match
value: 80.19
name: Exact Match
- type: f1
value: 85.028
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts
type: squadshifts
config: amazon
split: test
metrics:
- type: exact_match
value: 69.712
name: Exact Match
- type: f1
value: 81.171
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts
type: squadshifts
config: new_wiki
split: test
metrics:
- type: exact_match
value: 81.544
name: Exact Match
- type: f1
value: 89.782
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts
type: squadshifts
config: nyt
split: test
metrics:
- type: exact_match
value: 80.05
name: Exact Match
- type: f1
value: 87.756
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts
type: squadshifts
config: reddit
split: test
metrics:
- type: exact_match
value: 60.481
name: Exact Match
- type: f1
value: 68.686
name: F1
---
# deberta-v3-base for Extractive QA
This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the SQuAD 2.0, MRQA, AdversarialQA, and SynQA datasets. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
## Overview
**Language model:** deberta-v3-base
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD 2.0, MRQA, AdversarialQA, SynQA
**Eval data:** SQuAD 2.0
**Infrastructure**: 1x NVIDIA 3070
## Model Usage
```python
import torch
from transformers import(
AutoModelForQuestionAnswering,
AutoTokenizer,
pipeline
)
model_name = "sjrhuschlee/deberta-v3-base-squad2-ext-v1"
# a) Using pipelines
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
qa_input = {
'question': 'Where do I live?',
'context': 'My name is Sarah and I live in London'
}
res = nlp(qa_input)
# {'score': 0.984, 'start': 30, 'end': 37, 'answer': ' London'}
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
question = 'Where do I live?'
context = 'My name is Sarah and I live in London'
encoding = tokenizer(question, context, return_tensors="pt")
start_scores, end_scores = model(
encoding["input_ids"],
attention_mask=encoding["attention_mask"],
return_dict=False
)
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
answer_tokens = all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1]
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
# 'London'
```
## Dataset Preparation
The MRQA dataset was updated to fix some errors and formatting to work with the `run_qa.py` example script provided in the Hugging Face Transformers library.
The changes included
- Updating incorrect answer starts locations (usually off by a few characters)
- Updating the answer text to match the text found in the context
The script used to process the MRQA dataset is provided in this repo at XXX.
### MRQA
- The answer
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
### Framework versions
- Transformers 4.31.0.dev0 |