--- license: mit datasets: - squad_v2 - squad - mrqa - mbartolo/synQA - adversarial_qa language: - en library_name: transformers pipeline_tag: question-answering tags: - deberta - deberta-v3 - question-answering - squad - squad_v2 model-index: - name: sjrhuschlee/deberta-v3-base-squad2-ext-v1 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 79.483 name: Exact Match - type: f1 value: 82.343 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 85.894 name: Exact Match - type: f1 value: 91.298 name: F1 - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - type: exact_match value: 44.867 name: Exact Match - type: f1 value: 55.996 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad_adversarial type: squad_adversarial config: AddOneSent split: validation metrics: - type: exact_match value: 80.19 name: Exact Match - type: f1 value: 85.028 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts type: squadshifts config: amazon split: test metrics: - type: exact_match value: 69.712 name: Exact Match - type: f1 value: 81.171 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts type: squadshifts config: new_wiki split: test metrics: - type: exact_match value: 81.544 name: Exact Match - type: f1 value: 89.782 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts type: squadshifts config: nyt split: test metrics: - type: exact_match value: 80.05 name: Exact Match - type: f1 value: 87.756 name: F1 - task: type: question-answering name: Question Answering dataset: name: squadshifts type: squadshifts config: reddit split: test metrics: - type: exact_match value: 60.481 name: Exact Match - type: f1 value: 68.686 name: F1 --- # deberta-v3-base for Extractive QA This is the [deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering. ## Overview **Language model:** deberta-v3-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Infrastructure**: 1x NVIDIA 3070 ## Model Usage ```python import torch from transformers import( AutoModelForQuestionAnswering, AutoTokenizer, pipeline ) model_name = "sjrhuschlee/deberta-v3-base-squad2-ext-v1" # a) Using pipelines nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) qa_input = { 'question': 'Where do I live?', 'context': 'My name is Sarah and I live in London' } res = nlp(qa_input) # {'score': 0.984, 'start': 30, 'end': 37, 'answer': ' London'} # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) question = 'Where do I live?' context = 'My name is Sarah and I live in London' encoding = tokenizer(question, context, return_tensors="pt") start_scores, end_scores = model( encoding["input_ids"], attention_mask=encoding["attention_mask"], return_dict=False ) all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) answer_tokens = all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1] answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens)) # 'London' ``` ## Metrics ```bash # Squad v2 { "eval_HasAns_exact": 84.36234817813765, "eval_HasAns_f1": 90.09079905537246, "eval_HasAns_total": 5928, "eval_NoAns_exact": 74.61732548359966, "eval_NoAns_f1": 74.61732548359966, "eval_NoAns_total": 5945, "eval_best_exact": 79.45759285774446, "eval_best_exact_thresh": 0.0, "eval_best_f1": 82.31771724081922, "eval_best_f1_thresh": 0.0, "eval_exact": 79.48286027120358, "eval_f1": 82.34298465427844, "eval_runtime": 109.7262, "eval_samples": 11951, "eval_samples_per_second": 108.917, "eval_steps_per_second": 4.539, "eval_total": 11873 } # Squad { "eval_exact": 85.89403973509934, "eval_f1": 91.2982923196374, "eval_runtime": 96.6499, "eval_samples": 10618, "eval_samples_per_second": 109.86, "eval_steps_per_second": 4.584, "eval_total": 10570 } ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Framework versions - Transformers 4.31.0.dev0