skylord commited on
Commit
03f5c00
1 Parent(s): a18a78a

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false
9
+ }
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: There is a man here forced us the girls in the house to have sex with him.
12
+ He took videos of us and now he is asking for money. Can someone help us?
13
+ - text: I work in textile factory. My boss, he not nice. He do things I don't like.
14
+ He make job not good, and my friends stop talk to me. I need help
15
+ - text: In Bahay Toro QC even though they did not wear face masks there was not
16
+ much news of COVID there were those who felt symptoms but self-quarantined and
17
+ there were also those who died who were told that they were COVID even though
18
+ they were not. Only a few were reported dead in the area due to COVID less than
19
+ five. During the pandemic the Barangay had curfew social distancing facemasks
20
+ and alcohol. We received SAP canned rice alcohol and facemasks and money. If
21
+ the number of COVID cases increases the barangay is not ready and when it increases that
22
+ is just the time that they will be stricter. All of us in our family were able
23
+ to be vaccinated and had booster shots apart from my younger brother. When it
24
+ tightens again and there is a pandemic unemployment and source of income will
25
+ be a test. Focus more on providing immediate assistance in the midst of a pandemic
26
+ - text: There is a child here who will be married soon. Please send help urgently.
27
+ She is only 13. It is not the first time he has done this.
28
+ - text: Drenage problem here in lilanda
29
+ pipeline_tag: text-classification
30
+ inference: true
31
+ base_model: BAAI/bge-small-en-v1.5
32
+ model-index:
33
+ - name: SetFit with BAAI/bge-small-en-v1.5
34
+ results:
35
+ - task:
36
+ type: text-classification
37
+ name: Text Classification
38
+ dataset:
39
+ name: Unknown
40
+ type: unknown
41
+ split: test
42
+ metrics:
43
+ - type: accuracy
44
+ value: 0.9827586206896551
45
+ name: Accuracy
46
+ ---
47
+
48
+ # SetFit with BAAI/bge-small-en-v1.5
49
+
50
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
51
+
52
+ The model has been trained using an efficient few-shot learning technique that involves:
53
+
54
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
55
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
56
+
57
+ ## Model Details
58
+
59
+ ### Model Description
60
+ - **Model Type:** SetFit
61
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
62
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
63
+ - **Maximum Sequence Length:** 512 tokens
64
+ - **Number of Classes:** 2 classes
65
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
66
+ <!-- - **Language:** Unknown -->
67
+ <!-- - **License:** Unknown -->
68
+
69
+ ### Model Sources
70
+
71
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
72
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
73
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
74
+
75
+ ### Model Labels
76
+ | Label | Examples |
77
+ |:----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
78
+ | sensitive | <ul><li>'Im Amie Taylaran from Pan-ay Clarin from Solo Parent Organization grateful and excited to receive the help you are giving.'</li><li>'I want to volunteer'</li><li>'There is now a growing popular street Pennsylvania street in the annex Phase 3 of Greenland Executive Village for bikers walkers joggers every morning when the weather is fair. I presume they are groups of retirees matrons sports enthusiasts an even dance exercisers. They all wear face masks for health protection against COVID-19 infection. My concern is this: face masks are just thrown away after use when these fitness buffs are done with their morning binges. Face masks thrown on the pavement of the street the sidewalks and the grass field. Health fitness aficionados they all are but careless with the proper disposal of their face masks.'</li></ul> |
79
+ | other | <ul><li>'There is a man here forced us the girls in the house to have sex with him. He took videos of us and now he is asking for money. Can someone help us?'</li><li>'In this community alcohol abuse is rampant. The men go out drinking and come home and beat their wives. They are getting seriously injured.'</li><li>"I find myself in a very challenging situation - I've experienced sexual abuse at work. If anyone has gone through something similar, I would appreciate your guidance and support. It's tough, but we're stronger together."</li></ul> |
80
+
81
+ ## Evaluation
82
+
83
+ ### Metrics
84
+ | Label | Accuracy |
85
+ |:--------|:---------|
86
+ | **all** | 0.9828 |
87
+
88
+ ## Uses
89
+
90
+ ### Direct Use for Inference
91
+
92
+ First install the SetFit library:
93
+
94
+ ```bash
95
+ pip install setfit
96
+ ```
97
+
98
+ Then you can load this model and run inference.
99
+
100
+ ```python
101
+ from setfit import SetFitModel
102
+
103
+ # Download from the 🤗 Hub
104
+ model = SetFitModel.from_pretrained("skylord/setfit-bge-small-v1.5-sst2-8-shot-talk2loop")
105
+ # Run inference
106
+ preds = model("Drenage problem here in lilanda")
107
+ ```
108
+
109
+ <!--
110
+ ### Downstream Use
111
+
112
+ *List how someone could finetune this model on their own dataset.*
113
+ -->
114
+
115
+ <!--
116
+ ### Out-of-Scope Use
117
+
118
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
119
+ -->
120
+
121
+ <!--
122
+ ## Bias, Risks and Limitations
123
+
124
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
125
+ -->
126
+
127
+ <!--
128
+ ### Recommendations
129
+
130
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
131
+ -->
132
+
133
+ ## Training Details
134
+
135
+ ### Training Set Metrics
136
+ | Training set | Min | Median | Max |
137
+ |:-------------|:----|:-------|:----|
138
+ | Word count | 4 | 38.0 | 171 |
139
+
140
+ | Label | Training Sample Count |
141
+ |:----------|:----------------------|
142
+ | sensitive | 8 |
143
+ | other | 8 |
144
+
145
+ ### Training Hyperparameters
146
+ - batch_size: (32, 32)
147
+ - num_epochs: (10, 10)
148
+ - max_steps: -1
149
+ - sampling_strategy: oversampling
150
+ - body_learning_rate: (2e-05, 1e-05)
151
+ - head_learning_rate: 0.01
152
+ - loss: CosineSimilarityLoss
153
+ - distance_metric: cosine_distance
154
+ - margin: 0.25
155
+ - end_to_end: False
156
+ - use_amp: False
157
+ - warmup_proportion: 0.1
158
+ - seed: 42
159
+ - eval_max_steps: -1
160
+ - load_best_model_at_end: False
161
+
162
+ ### Training Results
163
+ | Epoch | Step | Training Loss | Validation Loss |
164
+ |:-----:|:----:|:-------------:|:---------------:|
165
+ | 0.2 | 1 | 0.1988 | - |
166
+ | 10.0 | 50 | 0.019 | - |
167
+
168
+ ### Framework Versions
169
+ - Python: 3.10.11
170
+ - SetFit: 1.0.3
171
+ - Sentence Transformers: 2.3.1
172
+ - Transformers: 4.37.2
173
+ - PyTorch: 2.2.0+cu121
174
+ - Datasets: 2.16.1
175
+ - Tokenizers: 0.15.1
176
+
177
+ ## Citation
178
+
179
+ ### BibTeX
180
+ ```bibtex
181
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
182
+ doi = {10.48550/ARXIV.2209.11055},
183
+ url = {https://arxiv.org/abs/2209.11055},
184
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
185
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
186
+ title = {Efficient Few-Shot Learning Without Prompts},
187
+ publisher = {arXiv},
188
+ year = {2022},
189
+ copyright = {Creative Commons Attribution 4.0 International}
190
+ }
191
+ ```
192
+
193
+ <!--
194
+ ## Glossary
195
+
196
+ *Clearly define terms in order to be accessible across audiences.*
197
+ -->
198
+
199
+ <!--
200
+ ## Model Card Authors
201
+
202
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
203
+ -->
204
+
205
+ <!--
206
+ ## Model Card Contact
207
+
208
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
209
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.37.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "sensitive",
5
+ "other"
6
+ ]
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f083f441e2bb85025ebb02d19ae64bcb10e98ad881677a2d6bc1b3aac5adc4d1
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:103be9afea643226753ab2e56970869296d0b50435c89155141d146051b77fff
3
+ size 3935
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff