skylord commited on
Commit
2899fa9
1 Parent(s): 9eb7f45

Updated model

Browse files
.ipynb_checkpoints/README-checkpoint.md CHANGED
@@ -29,9 +29,12 @@ results:
29
  type: iiith
30
  args: hi
31
  metrics:
32
- - name: Test WER
33
  type: wer
34
- value: 19.05
 
 
 
35
  ---
36
 
37
  # Wav2Vec2-Large-XLSR-53-Hindi
@@ -41,11 +44,11 @@ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav
41
  - [Indic TTS- IITM](https://www.iitm.ac.in/donlab/tts/index.php) and
42
  - [IIITH - Indic Speech Datasets](http://speech.iiit.ac.in/index.php/research-svl/69.html)
43
 
44
- The Hindi CommonVoice data is skewed towards male voices. However the other Indic datasets are well balanced.
45
 
46
- Fine-tuned on facebook/wav2vec2-large-xlsr-53 using Hindi dataset :: 30 epochs >> 19.05% WER
47
- Resuming from checkpoints trained for another XX epochs >> XX.XX%
48
 
 
 
49
  When using this model, make sure that your speech input is sampled at 16kHz.
50
 
51
  ## Usage
@@ -85,7 +88,81 @@ print("Reference:", test_dataset["sentence"][:2])
85
 
86
  ## Evaluation
87
 
88
- The model can be evaluated as follows on the Hindi test data of Common Voice.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
 
91
  ```python
@@ -132,7 +209,8 @@ result = test_dataset.map(evaluate, batched=True, batch_size=8)
132
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
133
  ```
134
 
135
- **Test Result**: 19.056 %
 
136
 
137
 
138
  ## Training
 
29
  type: iiith
30
  args: hi
31
  metrics:
32
+ - name: Custom Dataset Hindi WER
33
  type: wer
34
+ value: 17.23
35
+ - name: CommonVoice Hindi (Test) WER
36
+ type: wer
37
+ value: 56.46
38
  ---
39
 
40
  # Wav2Vec2-Large-XLSR-53-Hindi
 
44
  - [Indic TTS- IITM](https://www.iitm.ac.in/donlab/tts/index.php) and
45
  - [IIITH - Indic Speech Datasets](http://speech.iiit.ac.in/index.php/research-svl/69.html)
46
 
47
+ The Indic datasets are well balanced across gender and accents. However the CommonVoice dataset is skewed towards male voices
48
 
 
 
49
 
50
+ Fine-tuned on facebook/wav2vec2-large-xlsr-53 using Hindi dataset :: 60 epochs >> 17.05% WER
51
+
52
  When using this model, make sure that your speech input is sampled at 16kHz.
53
 
54
  ## Usage
 
88
 
89
  ## Evaluation
90
 
91
+ The model can be evaluated as follows on the following two datasets:
92
+ 1. Custom dataset created from 20% of Indic, IIITH and CV (test): 17.
93
+ 2. CommonVoice Hindi test dataset
94
+
95
+ ```python
96
+ import torch
97
+ import torchaudio
98
+ from datasets import load_dataset, load_metric
99
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
100
+ import re
101
+
102
+ ## Load the datasets
103
+ test_dataset = load_dataset("common_voice", "hi", split="test")
104
+
105
+ indic = load_dataset("csv", data_files= {'train':"/workspace/data/hi2/indic_train_full.csv",
106
+ "test": "/workspace/data/hi2/indic_test_full.csv"}, download_mode="force_redownload")
107
+ iiith = load_dataset("csv", data_files= {"train": "/workspace/data/hi2/iiit_hi_train.csv",
108
+ "test": "/workspace/data/hi2/iiit_hi_test.csv"}, download_mode="force_redownload")
109
+
110
+ ## Pre-process datasets and concatenate to create test dataset
111
+ # Drop columns of common_voice
112
+ split = ['train', 'test', 'validation', 'other', 'invalidated']
113
+
114
+ for sp in split:
115
+ common_voice[sp] = common_voice[sp].remove_columns(['client_id', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'])
116
+
117
+ common_voice = common_voice.rename_column('path', 'audio_path')
118
+ common_voice = common_voice.rename_column('sentence', 'target_text')
119
+
120
+ train_dataset = datasets.concatenate_datasets([indic['train'], iiith['train'], common_voice['train']])
121
+ test_dataset = datasets.concatenate_datasets([indic['test'], iiith['test'], common_voice['test'], common_voice['validation']])
122
+
123
+ ## Load model from HF hub
124
+
125
+ wer = load_metric("wer")
126
+
127
+ processor = Wav2Vec2Processor.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
128
+ model = Wav2Vec2ForCTC.from_pretrained("skylord/wav2vec2-large-xlsr-hindi")
129
+ model.to("cuda")
130
+
131
+ chars_to_ignore_regex = '[\,\?\.\!\-\'\;\:\"\“\%\‘\”\�Utrnle\_]'
132
+ unicode_ignore_regex = r'[dceMaWpmFui\xa0\u200d]' # Some unwanted unicode chars
133
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
134
+
135
+ # Preprocessing the datasets.
136
+ # We need to read the aduio files as arrays
137
+
138
+ def speech_file_to_array_fn(batch):
139
+ batch["target_text"] = re.sub(chars_to_ignore_regex, '', batch["target_text"])
140
+ batch["target_text"] = re.sub(unicode_ignore_regex, '', batch["target_text"])
141
+
142
+ speech_array, sampling_rate = torchaudio.load(batch["audio_path"])
143
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
144
+ return batch
145
+
146
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
147
+
148
+ # Preprocessing the datasets.
149
+ # We need to read the aduio files as arrays
150
+
151
+ def evaluate(batch):
152
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
153
+ with torch.no_grad():
154
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
155
+ pred_ids = torch.argmax(logits, dim=-1)
156
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
157
+ return batch
158
+
159
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
160
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
161
+ ```
162
+
163
+ **Test Result on custom dataset**: 17.23 %
164
+
165
+
166
 
167
 
168
  ```python
 
209
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
210
  ```
211
 
212
+ **Test Result on CommonVoice**: 56.46 %
213
+
214
 
215
 
216
  ## Training
README.md CHANGED
@@ -34,7 +34,7 @@ results:
34
  value: 17.23
35
  - name: CommonVoice Hindi (Test) WER
36
  type: wer
37
- value: 52.35
38
  ---
39
 
40
  # Wav2Vec2-Large-XLSR-53-Hindi
@@ -44,11 +44,11 @@ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav
44
  - [Indic TTS- IITM](https://www.iitm.ac.in/donlab/tts/index.php) and
45
  - [IIITH - Indic Speech Datasets](http://speech.iiit.ac.in/index.php/research-svl/69.html)
46
 
47
- The Hindi CommonVoice data is skewed towards male voices. However the other Indic datasets are well balanced.
48
 
49
- Fine-tuned on facebook/wav2vec2-large-xlsr-53 using Hindi dataset :: 30 epochs >> 19.05% WER
50
- Resuming from checkpoints trained for another XX epochs >> XX.XX%
51
 
 
 
52
  When using this model, make sure that your speech input is sampled at 16kHz.
53
 
54
  ## Usage
@@ -89,7 +89,7 @@ print("Reference:", test_dataset["sentence"][:2])
89
  ## Evaluation
90
 
91
  The model can be evaluated as follows on the following two datasets:
92
- 1. Custom dataset created from 20% of Indic, IIITH and CV (test)
93
  2. CommonVoice Hindi test dataset
94
 
95
  ```python
@@ -160,7 +160,7 @@ result = test_dataset.map(evaluate, batched=True, batch_size=8)
160
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
161
  ```
162
 
163
- **Test Result on custom dataset**: 19.xx %
164
 
165
 
166
 
@@ -209,7 +209,7 @@ result = test_dataset.map(evaluate, batched=True, batch_size=8)
209
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
210
  ```
211
 
212
- **Test Result on CommonVoice**: 52.xx %
213
 
214
 
215
 
 
34
  value: 17.23
35
  - name: CommonVoice Hindi (Test) WER
36
  type: wer
37
+ value: 56.46
38
  ---
39
 
40
  # Wav2Vec2-Large-XLSR-53-Hindi
 
44
  - [Indic TTS- IITM](https://www.iitm.ac.in/donlab/tts/index.php) and
45
  - [IIITH - Indic Speech Datasets](http://speech.iiit.ac.in/index.php/research-svl/69.html)
46
 
47
+ The Indic datasets are well balanced across gender and accents. However the CommonVoice dataset is skewed towards male voices
48
 
 
 
49
 
50
+ Fine-tuned on facebook/wav2vec2-large-xlsr-53 using Hindi dataset :: 60 epochs >> 17.05% WER
51
+
52
  When using this model, make sure that your speech input is sampled at 16kHz.
53
 
54
  ## Usage
 
89
  ## Evaluation
90
 
91
  The model can be evaluated as follows on the following two datasets:
92
+ 1. Custom dataset created from 20% of Indic, IIITH and CV (test): 17.
93
  2. CommonVoice Hindi test dataset
94
 
95
  ```python
 
160
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
161
  ```
162
 
163
+ **Test Result on custom dataset**: 17.23 %
164
 
165
 
166
 
 
209
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
210
  ```
211
 
212
+ **Test Result on CommonVoice**: 56.46 %
213
 
214
 
215
 
config.json CHANGED
@@ -70,7 +70,7 @@
70
  "num_conv_pos_embeddings": 128,
71
  "num_feat_extract_layers": 7,
72
  "num_hidden_layers": 24,
73
- "pad_token_id": 93,
74
  "transformers_version": "4.5.0.dev0",
75
- "vocab_size": 94
76
  }
 
70
  "num_conv_pos_embeddings": 128,
71
  "num_feat_extract_layers": 7,
72
  "num_hidden_layers": 24,
73
+ "pad_token_id": 74,
74
  "transformers_version": "4.5.0.dev0",
75
+ "vocab_size": 75
76
  }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:be0fd803682bd53a5e10531a8c98d1d154a4303d6d03d28a07c09b221c0e324e
3
- size 1262319255
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c42f7b3bd5cb4694035320ae412c100449b231a49a05e2194f8cc844646fc697
3
+ size 1262241303
vocab.json CHANGED
@@ -1 +1 @@
1
- {"प": 0, "": 1, "": 2, "": 3, "": 4, "": 5, "?": 6, "": 7, "": 8, "": 9, "": 10, "": 11, "u": 12, "": 13, "r": 14, "": 15, "": 16, "": 17, "": 18, "": 19, "": 20, "": 21, ".": 22, "": 23, "": 24, "": 25, "": 26, "": 27, "F": 28, "": 29, "": 30, "": 31, "ि": 32, "": 33, "!": 34, "": 35, "": 37, "": 38, "": 39, "": 40, "": 41, ",": 42, "": 43, "": 44, "": 45, "": 46, "": 47, "": 48, "": 49, "": 50, "": 51, "": 52, "": 53, "": 54, "": 55, "e": 56, "p": 57, "a": 58, "l": 59, "M": 60, "": 61, "": 62, "व": 63, "": 64, ":": 65, "\"": 66, "'": 67, "": 68, "": 69, "": 70, " ": 71, "": 72, "अ": 73, "क़": 74, "त": 75, "ु": 76, "औ": 77, "m": 78, "श": 79, "च": 80, "़": 81, "ए": 82, "ह": 83, "W": 84, "ग़": 85, "ठ": 86, "ज": 87, "-": 88, "i": 89, "ख़": 90, "म": 91, "/": 36, "[UNK]": 92, "[PAD]": 93}
 
1
+ {"प": 0, "": 1, "": 2, "": 3, "": 4, "": 5, "": 6, "": 7, "": 8, "": 9, "": 10, "": 11, "": 12, "": 13, "": 14, "": 15, "": 16, "": 17, "ि": 18, "": 19, "": 20, "": 21, "": 22, "": 23, "": 24, "": 25, "": 26, "": 27, "": 28, "": 29, "": 30, "": 31, "": 32, "": 33, "": 34, "": 35, "": 36, "": 37, "": 38, "": 39, "": 41, "": 42, "": 43, "": 44, "": 45, "": 46, "": 47, "": 48, "": 49, "": 50, "": 51, "": 52, "": 53, "": 54, "": 55, "": 56, "": 57, "": 58, "": 59, "": 60, "": 61, "": 62, "व": 63, "": 64, "": 65, "": 66, "": 67, "": 68, "": 69, "": 70, "": 71, "": 72, "/": 40, "[UNK]": 73, "[PAD]": 74}