anime-aesthetic / export.py
skytnt's picture
init
caf926d
raw
history blame
2.19 kB
import argparse
import torch
from anime_aesthetic import AnimeAesthetic, model_cfgs
def export_onnx(model, img_size, path):
import onnx
from onnxsim import simplify
torch.onnx.export(model, # model being run
torch.randn(1, 3, img_size, img_size), # model input (or a tuple for multiple inputs)
path, # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=11, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=["img"], # the model's input names
output_names=["score"], # the model's output names
verbose=True
)
onnx_model = onnx.load(path)
model_simp, check = simplify(onnx_model)
assert check, "Simplified ONNX model could not be validated"
onnx.save(model_simp, path)
print('finished exporting onnx')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# model args
parser.add_argument(
"--cfg",
type=str,
default="tiny",
choices=list(model_cfgs.keys()),
help="model configure",
)
parser.add_argument('--ckpt', type=str, default='lightning_logs/version_11/checkpoints/last.ckpt',
help='model checkpoint path')
parser.add_argument('--out', type=str, default='model.onnx',
help='output path')
parser.add_argument('--to', type=str, default='onnx', choices=["onnx"],
help='export to ()')
parser.add_argument('--img-size', type=int, default=768,
help='input image size')
opt = parser.parse_args()
print(opt)
model = AnimeAesthetic.load_from_checkpoint(opt.ckpt, cfg=opt.cfg, ema_decay=0.999, map_location="cpu",strict=False)
model = model.eval()
if opt.to == "onnx":
export_onnx(model, opt.img_size, opt.out)