anime-aesthetic / anime_aesthetic.py
skytnt's picture
Update anime_aesthetic.py
0b4ff36
import argparse
import json
import os
import random
from copy import deepcopy
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from timm.models.layers import DropPath, trunc_normal_
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.transforms import functional
# ========= Model =========
# copy from https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
class LayerNorm(nn.Module):
"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape,)
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(
x, self.normalized_shape, self.weight, self.bias, self.eps
)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class GRN(nn.Module):
"""GRN (Global Response Normalization) layer"""
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x
class Block(nn.Module):
"""ConvNeXtV2 Block.
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
"""
def __init__(self, dim, drop_path=0.0):
super().__init__()
self.dwconv = nn.Conv2d(
dim, dim, kernel_size=7, padding=3, groups=dim
) # depthwise conv
self.norm = LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(
dim, 4 * dim
) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.grn = GRN(4 * dim)
self.pwconv2 = nn.Linear(4 * dim, dim)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.grn(x)
x = self.pwconv2(x)
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class ConvNeXtV2(nn.Module):
"""ConvNeXt V2
Args:
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
dims (int[]): Feature dimension at each stage. Default: [96, 192, 384, 768]
drop_path_rate (float): Stochastic depth rate. Default: 0.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
"""
def __init__(
self,
in_chans=3,
num_classes=1000,
depths=[3, 3, 9, 3],
dims=[96, 192, 384, 768],
drop_path_rate=0.0,
head_init_scale=1.0,
):
super().__init__()
self.depths = depths
self.downsample_layers = (
nn.ModuleList()
) # stem and 3 intermediate downsampling conv layers
stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
)
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
self.stages = (
nn.ModuleList()
) # 4 feature resolution stages, each consisting of multiple residual blocks
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
cur = 0
for i in range(4):
stage = nn.Sequential(
*[
Block(dim=dims[i], drop_path=dp_rates[cur + j])
for j in range(depths[i])
]
)
self.stages.append(stage)
cur += depths[i]
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
self.head = nn.Linear(dims[-1], num_classes)
self.apply(self._init_weights)
self.head.weight.data.mul_(head_init_scale)
self.head.bias.data.mul_(head_init_scale)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
def forward_features(self, x):
for i in range(4):
x = self.downsample_layers[i](x)
x = self.stages[i](x)
return self.norm(
x.mean([-2, -1])
) # global average pooling, (N, C, H, W) -> (N, C)
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
model_cfgs = {
"atto": [[2, 2, 6, 2], [40, 80, 160, 320]],
"femto": [[2, 2, 6, 2], [48, 96, 192, 384]],
"pico": [[2, 2, 6, 2], [64, 128, 256, 512]],
"nano": [[2, 2, 8, 2], [80, 160, 320, 640]],
"tiny": [[3, 3, 9, 3], [96, 192, 384, 768]],
"base": [[3, 3, 27, 3], [128, 256, 512, 1024]],
"large": [[3, 3, 27, 3], [192, 384, 768, 1536]],
"huge": [[3, 3, 27, 3], [352, 704, 1408, 2816]],
}
def convnextv2(cfg_name, **kwargs):
cfg = model_cfgs[cfg_name]
model = ConvNeXtV2(depths=cfg[0], dims=cfg[1], **kwargs)
return model
# ========= Dataset =========
EXTENSION = [".png", ".jpg", ".jpeg"]
def file_ext(fname):
return os.path.splitext(fname)[1].lower()
def rescale_pad(image, output_size, random_pad=False):
h, w = image.shape[-2:]
if h != output_size or w != output_size:
r = min(output_size / h, output_size / w)
new_h, new_w = int(h * r), int(w * r)
if random_pad:
r2 = random.uniform(0.9, 1)
new_h, new_w = int(new_h * r2), int(new_w * r2)
ph = output_size - new_h
pw = output_size - new_w
left = random.randint(0, pw) if random_pad else pw // 2
right = pw - left
top = random.randint(0, ph) if random_pad else ph // 2
bottom = ph - top
image = transforms.functional.resize(image, [new_h, new_w])
image = transforms.functional.pad(
image, [left, top, right, bottom], random.uniform(0, 1) if random_pad else 0
)
return image
def random_crop(image, min_rate=0.8):
h, w = image.shape[-2:]
new_h, new_w = int(h * random.uniform(min_rate, 1)), int(w * random.uniform(min_rate, 1))
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
image = image[:, top: top + new_h, left: left + new_w]
return image
class AnimeAestheticDataset(Dataset):
def __init__(self, path, img_size, xflip=True):
all_files = {
os.path.relpath(os.path.join(root, fname), path)
for root, _dirs, files in os.walk(path)
for fname in files
}
all_images = sorted(
fname for fname in all_files if file_ext(fname) in EXTENSION
)
with open(os.path.join(path, "label.json"), "r", encoding="utf8") as f:
labels = json.load(f)
image_list = []
label_list = []
for fname in all_images:
if fname not in labels:
continue
image_list.append(fname)
label_list.append(labels[fname])
self.path = path
self.img_size = img_size
self.xflip = xflip
self.image_list = image_list
self.label_list = label_list
def __len__(self):
length = len(self.image_list)
if self.xflip:
length *= 2
return length
def __getitem__(self, index):
real_len = len(self.image_list)
fname = self.image_list[index % real_len]
label = self.label_list[index % real_len]
image = Image.open(os.path.join(self.path, fname)).convert("RGB")
image = transforms.functional.to_tensor(image)
image = random_crop(image, 0.8)
image = rescale_pad(image, self.img_size, True)
if index // real_len != 0:
image = transforms.functional.hflip(image)
label = torch.tensor([label], dtype=torch.float32)
return image, label
# ========= Train =========
class AnimeAesthetic(pl.LightningModule):
def __init__(self, cfg: str, drop_path_rate=0.0, ema_decay=0):
super().__init__()
self.net = convnextv2(cfg, in_chans=3, num_classes=1, drop_path_rate=drop_path_rate)
self.ema_decay = ema_decay
self.ema = None
if ema_decay > 0:
self.ema = deepcopy(self.net)
self.ema.requires_grad_(False)
def configure_optimizers(self):
optimizer = optim.Adam(
self.net.parameters(),
lr=0.001,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=0,
)
return optimizer
def forward(self, x, use_ema=False):
x = (x - 0.5) / 0.5
net = self.ema if use_ema else self.net
return net(x)
def training_step(self, batch, batch_idx):
images, labels = batch
loss = F.mse_loss(self.forward(images, False), labels)
self.log_dict({"train/loss": loss})
return loss
def validation_step(self, batch, batch_idx):
images, labels = batch
mae = F.l1_loss(self.forward(images, False), labels)
logs = {"val/mae": mae}
if self.ema is not None:
mae_ema = F.l1_loss(self.forward(images, True), labels)
logs["val/mae_ema"] = mae_ema
self.log_dict(logs, sync_dist=True)
def on_train_batch_end(self, outputs, batch, batch_idx):
if self.ema is not None:
with torch.no_grad():
for ema_v, model_v in zip(
self.ema.state_dict().values(), self.net.state_dict().values()
):
ema_v.copy_(
self.ema_decay * ema_v + (1.0 - self.ema_decay) * model_v
)
def main(opt):
if not os.path.exists("lightning_logs"):
os.mkdir("lightning_logs")
torch.manual_seed(0)
np.random.seed(0)
print("---load dataset---")
full_dataset = AnimeAestheticDataset(opt.data, opt.img_size)
full_dataset_len = len(full_dataset)
train_dataset_len = int(full_dataset_len * opt.data_split)
val_dataset_len = full_dataset_len - train_dataset_len
train_dataset, val_dataset = torch.utils.data.random_split(
full_dataset, [train_dataset_len, val_dataset_len]
)
train_dataloader = DataLoader(
train_dataset,
batch_size=opt.batch_size_train,
shuffle=True,
persistent_workers=True,
num_workers=opt.workers_train,
pin_memory=True,
)
val_dataloader = DataLoader(
val_dataset,
batch_size=opt.batch_size_val,
shuffle=False,
persistent_workers=True,
num_workers=opt.workers_val,
pin_memory=True,
)
print(f"train: {len(train_dataset)}")
print(f"val: {len(val_dataset)}")
print("---define model---")
if opt.resume != "":
anime_aesthetic = AnimeAesthetic.load_from_checkpoint(
opt.resume, cfg=opt.cfg, drop_path_rate=opt.drop_path, ema_decay=opt.ema_decay
)
else:
anime_aesthetic = AnimeAesthetic(cfg=opt.cfg, drop_path_rate=opt.drop_path, ema_decay=opt.ema_decay)
print("---start train---")
checkpoint_callback = ModelCheckpoint(
monitor="val/mae",
mode="min",
save_top_k=1,
save_last=True,
auto_insert_metric_name=False,
filename="epoch={epoch},mae={val/mae:.4f}",
)
callbacks = [checkpoint_callback]
if opt.ema_decay > 0:
checkpoint_ema_callback = ModelCheckpoint(
monitor="val/mae_ema",
mode="min",
save_top_k=1,
save_last=False,
auto_insert_metric_name=False,
filename="epoch={epoch},mae-ema={val/mae_ema:.4f}",
)
callbacks.append(checkpoint_ema_callback)
trainer = Trainer(
precision=32 if opt.fp32 else 16,
accelerator=opt.accelerator,
devices=opt.devices,
max_epochs=opt.epoch,
benchmark=opt.benchmark,
accumulate_grad_batches=opt.acc_step,
val_check_interval=opt.val_epoch,
log_every_n_steps=opt.log_step,
strategy="ddp_find_unused_parameters_false" if opt.devices > 1 else None,
callbacks=callbacks,
)
trainer.fit(anime_aesthetic, train_dataloader, val_dataloader)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# model args
parser.add_argument(
"--cfg",
type=str,
default="tiny",
choices=list(model_cfgs.keys()),
help="model configure",
)
parser.add_argument(
"--resume", type=str, default="", help="resume training from ckpt"
)
parser.add_argument(
"--img-size",
type=int,
default=768,
help="image size for training and validation",
)
# dataset args
parser.add_argument(
"--data", type=str, default="./data", help="dataset path"
)
parser.add_argument(
"--data-split",
type=float,
default=0.9999,
help="split rate for training and validation",
)
# training args
parser.add_argument("--epoch", type=int, default=100, help="epoch num")
parser.add_argument(
"--batch-size-train", type=int, default=16, help="batch size for training"
)
parser.add_argument(
"--batch-size-val", type=int, default=2, help="batch size for val"
)
parser.add_argument(
"--workers-train",
type=int,
default=4,
help="workers num for training dataloader",
)
parser.add_argument(
"--workers-val",
type=int,
default=4,
help="workers num for validation dataloader",
)
parser.add_argument(
"--acc-step", type=int, default=8, help="gradient accumulation step"
)
parser.add_argument(
"--drop-path", type=float, default=0.1, help="Drop path rate"
)
parser.add_argument(
"--ema-decay", type=float, default=0.9999, help="use ema if ema-decay > 0"
)
parser.add_argument(
"--accelerator",
type=str,
default="gpu",
choices=["cpu", "gpu", "tpu", "ipu", "hpu", "auto"],
help="accelerator",
)
parser.add_argument("--devices", type=int, default=4, help="devices num")
parser.add_argument(
"--fp32", action="store_true", default=False, help="disable mix precision"
)
parser.add_argument(
"--benchmark", action="store_true", default=True, help="enable cudnn benchmark"
)
parser.add_argument(
"--log-step", type=int, default=2, help="log training loss every n steps"
)
parser.add_argument(
"--val-epoch", type=int, default=0.025, help="valid and save every n epoch"
)
opt = parser.parse_args()
print(opt)
main(opt)