Upload anime_aesthetic.py
Browse files- anime_aesthetic.py +495 -0
anime_aesthetic.py
ADDED
@@ -0,0 +1,495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
from copy import deepcopy
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pytorch_lightning as pl
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch.optim as optim
|
13 |
+
from PIL import Image
|
14 |
+
from pytorch_lightning import Trainer
|
15 |
+
from pytorch_lightning.callbacks import ModelCheckpoint
|
16 |
+
from timm.models.layers import DropPath, trunc_normal_
|
17 |
+
from torch.utils.data import DataLoader, Dataset
|
18 |
+
from torchvision import transforms
|
19 |
+
from torchvision.transforms import functional
|
20 |
+
|
21 |
+
|
22 |
+
# ========= Model =========
|
23 |
+
|
24 |
+
# copy from https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
|
25 |
+
|
26 |
+
|
27 |
+
class LayerNorm(nn.Module):
|
28 |
+
"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
29 |
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
|
30 |
+
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
|
31 |
+
with shape (batch_size, channels, height, width).
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
35 |
+
super().__init__()
|
36 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
37 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
38 |
+
self.eps = eps
|
39 |
+
self.data_format = data_format
|
40 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
41 |
+
raise NotImplementedError
|
42 |
+
self.normalized_shape = (normalized_shape,)
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
if self.data_format == "channels_last":
|
46 |
+
return F.layer_norm(
|
47 |
+
x, self.normalized_shape, self.weight, self.bias, self.eps
|
48 |
+
)
|
49 |
+
elif self.data_format == "channels_first":
|
50 |
+
u = x.mean(1, keepdim=True)
|
51 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
52 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
53 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
54 |
+
return x
|
55 |
+
|
56 |
+
|
57 |
+
class GRN(nn.Module):
|
58 |
+
"""GRN (Global Response Normalization) layer"""
|
59 |
+
|
60 |
+
def __init__(self, dim):
|
61 |
+
super().__init__()
|
62 |
+
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
|
63 |
+
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
|
67 |
+
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
68 |
+
return self.gamma * (x * Nx) + self.beta + x
|
69 |
+
|
70 |
+
|
71 |
+
class Block(nn.Module):
|
72 |
+
"""ConvNeXtV2 Block.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
dim (int): Number of input channels.
|
76 |
+
drop_path (float): Stochastic depth rate. Default: 0.0
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, dim, drop_path=0.0):
|
80 |
+
super().__init__()
|
81 |
+
self.dwconv = nn.Conv2d(
|
82 |
+
dim, dim, kernel_size=7, padding=3, groups=dim
|
83 |
+
) # depthwise conv
|
84 |
+
self.norm = LayerNorm(dim, eps=1e-6)
|
85 |
+
self.pwconv1 = nn.Linear(
|
86 |
+
dim, 4 * dim
|
87 |
+
) # pointwise/1x1 convs, implemented with linear layers
|
88 |
+
self.act = nn.GELU()
|
89 |
+
self.grn = GRN(4 * dim)
|
90 |
+
self.pwconv2 = nn.Linear(4 * dim, dim)
|
91 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
92 |
+
|
93 |
+
def forward(self, x):
|
94 |
+
input = x
|
95 |
+
x = self.dwconv(x)
|
96 |
+
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
97 |
+
x = self.norm(x)
|
98 |
+
x = self.pwconv1(x)
|
99 |
+
x = self.act(x)
|
100 |
+
x = self.grn(x)
|
101 |
+
x = self.pwconv2(x)
|
102 |
+
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
103 |
+
|
104 |
+
x = input + self.drop_path(x)
|
105 |
+
return x
|
106 |
+
|
107 |
+
|
108 |
+
class ConvNeXtV2(nn.Module):
|
109 |
+
"""ConvNeXt V2
|
110 |
+
|
111 |
+
Args:
|
112 |
+
in_chans (int): Number of input image channels. Default: 3
|
113 |
+
num_classes (int): Number of classes for classification head. Default: 1000
|
114 |
+
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
|
115 |
+
dims (int[]): Feature dimension at each stage. Default: [96, 192, 384, 768]
|
116 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
117 |
+
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
|
118 |
+
"""
|
119 |
+
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
in_chans=3,
|
123 |
+
num_classes=1000,
|
124 |
+
depths=[3, 3, 9, 3],
|
125 |
+
dims=[96, 192, 384, 768],
|
126 |
+
drop_path_rate=0.0,
|
127 |
+
head_init_scale=1.0,
|
128 |
+
):
|
129 |
+
super().__init__()
|
130 |
+
self.depths = depths
|
131 |
+
self.downsample_layers = (
|
132 |
+
nn.ModuleList()
|
133 |
+
) # stem and 3 intermediate downsampling conv layers
|
134 |
+
stem = nn.Sequential(
|
135 |
+
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
|
136 |
+
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
|
137 |
+
)
|
138 |
+
self.downsample_layers.append(stem)
|
139 |
+
for i in range(3):
|
140 |
+
downsample_layer = nn.Sequential(
|
141 |
+
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
|
142 |
+
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
|
143 |
+
)
|
144 |
+
self.downsample_layers.append(downsample_layer)
|
145 |
+
|
146 |
+
self.stages = (
|
147 |
+
nn.ModuleList()
|
148 |
+
) # 4 feature resolution stages, each consisting of multiple residual blocks
|
149 |
+
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
150 |
+
cur = 0
|
151 |
+
for i in range(4):
|
152 |
+
stage = nn.Sequential(
|
153 |
+
*[
|
154 |
+
Block(dim=dims[i], drop_path=dp_rates[cur + j])
|
155 |
+
for j in range(depths[i])
|
156 |
+
]
|
157 |
+
)
|
158 |
+
self.stages.append(stage)
|
159 |
+
cur += depths[i]
|
160 |
+
|
161 |
+
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
|
162 |
+
self.head = nn.Linear(dims[-1], num_classes)
|
163 |
+
|
164 |
+
self.apply(self._init_weights)
|
165 |
+
self.head.weight.data.mul_(head_init_scale)
|
166 |
+
self.head.bias.data.mul_(head_init_scale)
|
167 |
+
|
168 |
+
def _init_weights(self, m):
|
169 |
+
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
170 |
+
trunc_normal_(m.weight, std=0.02)
|
171 |
+
nn.init.constant_(m.bias, 0)
|
172 |
+
|
173 |
+
def forward_features(self, x):
|
174 |
+
for i in range(4):
|
175 |
+
x = self.downsample_layers[i](x)
|
176 |
+
x = self.stages[i](x)
|
177 |
+
return self.norm(
|
178 |
+
x.mean([-2, -1])
|
179 |
+
) # global average pooling, (N, C, H, W) -> (N, C)
|
180 |
+
|
181 |
+
def forward(self, x):
|
182 |
+
x = self.forward_features(x)
|
183 |
+
x = self.head(x)
|
184 |
+
return x
|
185 |
+
|
186 |
+
|
187 |
+
model_cfgs = {
|
188 |
+
"atto": [[2, 2, 6, 2], [40, 80, 160, 320]],
|
189 |
+
"femto": [[2, 2, 6, 2], [48, 96, 192, 384]],
|
190 |
+
"pico": [[2, 2, 6, 2], [64, 128, 256, 512]],
|
191 |
+
"nano": [[2, 2, 8, 2], [80, 160, 320, 640]],
|
192 |
+
"tiny": [[3, 3, 9, 3], [96, 192, 384, 768]],
|
193 |
+
"base": [[3, 3, 27, 3], [128, 256, 512, 1024]],
|
194 |
+
"large": [[3, 3, 27, 3], [192, 384, 768, 1536]],
|
195 |
+
"huge": [[3, 3, 27, 3], [352, 704, 1408, 2816]],
|
196 |
+
}
|
197 |
+
|
198 |
+
|
199 |
+
def convnextv2(cfg_name, **kwargs):
|
200 |
+
cfg = model_cfgs[cfg_name]
|
201 |
+
model = ConvNeXtV2(depths=cfg[0], dims=cfg[1], **kwargs)
|
202 |
+
return model
|
203 |
+
|
204 |
+
|
205 |
+
# ========= Dataset =========
|
206 |
+
|
207 |
+
EXTENSION = [".png", ".jpg", ".jpeg"]
|
208 |
+
|
209 |
+
|
210 |
+
def file_ext(fname):
|
211 |
+
return os.path.splitext(fname)[1].lower()
|
212 |
+
|
213 |
+
|
214 |
+
def rescale_pad(image, output_size, random_pad=False):
|
215 |
+
h, w = image.shape[-2:]
|
216 |
+
if h != output_size or w != output_size:
|
217 |
+
r = min(output_size / h, output_size / w)
|
218 |
+
new_h, new_w = int(h * r), int(w * r)
|
219 |
+
ph = output_size - new_h
|
220 |
+
pw = output_size - new_w
|
221 |
+
image = transforms.functional.resize(image, [new_h, new_w])
|
222 |
+
image = transforms.functional.pad(
|
223 |
+
image, [pw // 2, ph // 2, pw // 2 + pw % 2, ph // 2 + ph % 2], random.uniform(0, 1) if random_pad else 0
|
224 |
+
)
|
225 |
+
return image
|
226 |
+
|
227 |
+
|
228 |
+
def random_crop(image, min_rate=0.8):
|
229 |
+
h, w = image.shape[-2:]
|
230 |
+
new_h, new_w = int(h * random.uniform(min_rate, 1)), int(w * random.uniform(min_rate, 1))
|
231 |
+
top = np.random.randint(0, h - new_h)
|
232 |
+
left = np.random.randint(0, w - new_w)
|
233 |
+
image = image[:, top: top + new_h, left: left + new_w]
|
234 |
+
return image
|
235 |
+
|
236 |
+
|
237 |
+
class AnimeAestheticDataset(Dataset):
|
238 |
+
def __init__(self, path, img_size, xflip=True):
|
239 |
+
all_files = {
|
240 |
+
os.path.relpath(os.path.join(root, fname), path)
|
241 |
+
for root, _dirs, files in os.walk(path)
|
242 |
+
for fname in files
|
243 |
+
}
|
244 |
+
all_images = sorted(
|
245 |
+
fname for fname in all_files if file_ext(fname) in EXTENSION
|
246 |
+
)
|
247 |
+
with open(os.path.join(path, "label.json"), "r", encoding="utf8") as f:
|
248 |
+
labels = json.load(f)
|
249 |
+
image_list = []
|
250 |
+
label_list = []
|
251 |
+
for fname in all_images:
|
252 |
+
if fname not in labels:
|
253 |
+
continue
|
254 |
+
image_list.append(fname)
|
255 |
+
label_list.append(labels[fname])
|
256 |
+
self.path = path
|
257 |
+
self.img_size = img_size
|
258 |
+
self.xflip = xflip
|
259 |
+
self.image_list = image_list
|
260 |
+
self.label_list = label_list
|
261 |
+
|
262 |
+
def __len__(self):
|
263 |
+
length = len(self.image_list)
|
264 |
+
if self.xflip:
|
265 |
+
length *= 2
|
266 |
+
return length
|
267 |
+
|
268 |
+
def __getitem__(self, index):
|
269 |
+
real_len = len(self.image_list)
|
270 |
+
fname = self.image_list[index % real_len]
|
271 |
+
label = self.label_list[index % real_len]
|
272 |
+
image = Image.open(os.path.join(self.path, fname)).convert("RGB")
|
273 |
+
image = transforms.functional.to_tensor(image)
|
274 |
+
image = random_crop(image, 0.8)
|
275 |
+
image = rescale_pad(image, self.img_size, True)
|
276 |
+
if index // real_len != 0:
|
277 |
+
image = transforms.functional.hflip(image)
|
278 |
+
label = torch.tensor([label], dtype=torch.float32)
|
279 |
+
return image, label
|
280 |
+
|
281 |
+
|
282 |
+
# ========= Train =========
|
283 |
+
|
284 |
+
|
285 |
+
class AnimeAesthetic(pl.LightningModule):
|
286 |
+
def __init__(self, cfg: str, drop_path_rate=0.0, ema_decay=0):
|
287 |
+
super().__init__()
|
288 |
+
self.net = convnextv2(cfg, in_chans=3, num_classes=1, drop_path_rate=drop_path_rate)
|
289 |
+
self.ema_decay = ema_decay
|
290 |
+
self.ema = None
|
291 |
+
if ema_decay > 0:
|
292 |
+
self.ema = deepcopy(self.net)
|
293 |
+
self.ema.requires_grad_(False)
|
294 |
+
|
295 |
+
def configure_optimizers(self):
|
296 |
+
optimizer = optim.Adam(
|
297 |
+
self.net.parameters(),
|
298 |
+
lr=0.001,
|
299 |
+
betas=(0.9, 0.999),
|
300 |
+
eps=1e-08,
|
301 |
+
weight_decay=0,
|
302 |
+
)
|
303 |
+
return optimizer
|
304 |
+
|
305 |
+
def forward(self, x, use_ema=False):
|
306 |
+
x = (x - 0.5) / 0.5
|
307 |
+
net = self.ema if use_ema else self.net
|
308 |
+
return net(x)
|
309 |
+
|
310 |
+
def training_step(self, batch, batch_idx):
|
311 |
+
images, labels = batch
|
312 |
+
loss = F.mse_loss(self.forward(images, False), labels)
|
313 |
+
self.log_dict({"train/loss": loss})
|
314 |
+
return loss
|
315 |
+
|
316 |
+
def validation_step(self, batch, batch_idx):
|
317 |
+
images, labels = batch
|
318 |
+
mae = F.l1_loss(self.forward(images, False), labels)
|
319 |
+
logs = {"val/mae": mae}
|
320 |
+
if self.ema is not None:
|
321 |
+
mae_ema = F.l1_loss(self.forward(images, True), labels)
|
322 |
+
logs["val/mae_ema"] = mae_ema
|
323 |
+
self.log_dict(logs, sync_dist=True)
|
324 |
+
|
325 |
+
def on_train_batch_end(self, outputs, batch, batch_idx):
|
326 |
+
if self.ema is not None:
|
327 |
+
with torch.no_grad():
|
328 |
+
for ema_v, model_v in zip(
|
329 |
+
self.ema.state_dict().values(), self.net.state_dict().values()
|
330 |
+
):
|
331 |
+
ema_v.copy_(
|
332 |
+
self.ema_decay * ema_v + (1.0 - self.ema_decay) * model_v
|
333 |
+
)
|
334 |
+
|
335 |
+
|
336 |
+
def main(opt):
|
337 |
+
if not os.path.exists("lightning_logs"):
|
338 |
+
os.mkdir("lightning_logs")
|
339 |
+
torch.manual_seed(0)
|
340 |
+
np.random.seed(0)
|
341 |
+
print("---load dataset---")
|
342 |
+
full_dataset = AnimeAestheticDataset(opt.data, opt.img_size)
|
343 |
+
full_dataset_len = len(full_dataset)
|
344 |
+
train_dataset_len = int(full_dataset_len * opt.data_split)
|
345 |
+
val_dataset_len = full_dataset_len - train_dataset_len
|
346 |
+
train_dataset, val_dataset = torch.utils.data.random_split(
|
347 |
+
full_dataset, [train_dataset_len, val_dataset_len]
|
348 |
+
)
|
349 |
+
train_dataloader = DataLoader(
|
350 |
+
train_dataset,
|
351 |
+
batch_size=opt.batch_size_train,
|
352 |
+
shuffle=True,
|
353 |
+
persistent_workers=True,
|
354 |
+
num_workers=opt.workers_train,
|
355 |
+
pin_memory=True,
|
356 |
+
)
|
357 |
+
val_dataloader = DataLoader(
|
358 |
+
val_dataset,
|
359 |
+
batch_size=opt.batch_size_val,
|
360 |
+
shuffle=False,
|
361 |
+
persistent_workers=True,
|
362 |
+
num_workers=opt.workers_val,
|
363 |
+
pin_memory=True,
|
364 |
+
)
|
365 |
+
print(f"train: {len(train_dataset)}")
|
366 |
+
print(f"val: {len(val_dataset)}")
|
367 |
+
print("---define model---")
|
368 |
+
if opt.resume != "":
|
369 |
+
anime_aesthetic = AnimeAesthetic.load_from_checkpoint(
|
370 |
+
opt.resume, cfg=opt.cfg, drop_path_rate=opt.drop_path, ema_decay=opt.ema_decay
|
371 |
+
)
|
372 |
+
else:
|
373 |
+
anime_aesthetic = AnimeAesthetic(cfg=opt.cfg, drop_path_rate=opt.drop_path, ema_decay=opt.ema_decay)
|
374 |
+
|
375 |
+
print("---start train---")
|
376 |
+
|
377 |
+
checkpoint_callback = ModelCheckpoint(
|
378 |
+
monitor="val/mae",
|
379 |
+
mode="min",
|
380 |
+
save_top_k=1,
|
381 |
+
save_last=True,
|
382 |
+
auto_insert_metric_name=False,
|
383 |
+
filename="epoch={epoch},mae={val/mae:.4f}",
|
384 |
+
)
|
385 |
+
callbacks = [checkpoint_callback]
|
386 |
+
if opt.ema_decay > 0:
|
387 |
+
checkpoint_ema_callback = ModelCheckpoint(
|
388 |
+
monitor="val/mae_ema",
|
389 |
+
mode="min",
|
390 |
+
save_top_k=1,
|
391 |
+
save_last=False,
|
392 |
+
auto_insert_metric_name=False,
|
393 |
+
filename="epoch={epoch},mae-ema={val/mae_ema:.4f}",
|
394 |
+
)
|
395 |
+
callbacks.append(checkpoint_ema_callback)
|
396 |
+
trainer = Trainer(
|
397 |
+
precision=32 if opt.fp32 else 16,
|
398 |
+
accelerator=opt.accelerator,
|
399 |
+
devices=opt.devices,
|
400 |
+
max_epochs=opt.epoch,
|
401 |
+
benchmark=opt.benchmark,
|
402 |
+
accumulate_grad_batches=opt.acc_step,
|
403 |
+
val_check_interval=opt.val_epoch,
|
404 |
+
log_every_n_steps=opt.log_step,
|
405 |
+
strategy="ddp_find_unused_parameters_false" if opt.devices > 1 else None,
|
406 |
+
callbacks=callbacks,
|
407 |
+
)
|
408 |
+
trainer.fit(anime_aesthetic, train_dataloader, val_dataloader)
|
409 |
+
|
410 |
+
|
411 |
+
if __name__ == "__main__":
|
412 |
+
parser = argparse.ArgumentParser()
|
413 |
+
# model args
|
414 |
+
parser.add_argument(
|
415 |
+
"--cfg",
|
416 |
+
type=str,
|
417 |
+
default="tiny",
|
418 |
+
choices=list(model_cfgs.keys()),
|
419 |
+
help="model configure",
|
420 |
+
)
|
421 |
+
parser.add_argument(
|
422 |
+
"--resume", type=str, default="", help="resume training from ckpt"
|
423 |
+
)
|
424 |
+
parser.add_argument(
|
425 |
+
"--img-size",
|
426 |
+
type=int,
|
427 |
+
default=768,
|
428 |
+
help="image size for training and validation",
|
429 |
+
)
|
430 |
+
|
431 |
+
# dataset args
|
432 |
+
parser.add_argument(
|
433 |
+
"--data", type=str, default="./data", help="dataset path"
|
434 |
+
)
|
435 |
+
parser.add_argument(
|
436 |
+
"--data-split",
|
437 |
+
type=float,
|
438 |
+
default=0.9995,
|
439 |
+
help="split rate for training and validation",
|
440 |
+
)
|
441 |
+
|
442 |
+
# training args
|
443 |
+
parser.add_argument("--epoch", type=int, default=100, help="epoch num")
|
444 |
+
parser.add_argument(
|
445 |
+
"--batch-size-train", type=int, default=16, help="batch size for training"
|
446 |
+
)
|
447 |
+
parser.add_argument(
|
448 |
+
"--batch-size-val", type=int, default=2, help="batch size for val"
|
449 |
+
)
|
450 |
+
parser.add_argument(
|
451 |
+
"--workers-train",
|
452 |
+
type=int,
|
453 |
+
default=4,
|
454 |
+
help="workers num for training dataloader",
|
455 |
+
)
|
456 |
+
parser.add_argument(
|
457 |
+
"--workers-val",
|
458 |
+
type=int,
|
459 |
+
default=4,
|
460 |
+
help="workers num for validation dataloader",
|
461 |
+
)
|
462 |
+
parser.add_argument(
|
463 |
+
"--acc-step", type=int, default=8, help="gradient accumulation step"
|
464 |
+
)
|
465 |
+
parser.add_argument(
|
466 |
+
"--drop-path", type=float, default=0.1, help="Drop path rate"
|
467 |
+
)
|
468 |
+
parser.add_argument(
|
469 |
+
"--ema-decay", type=float, default=0.9999, help="use ema if ema-decay > 0"
|
470 |
+
)
|
471 |
+
parser.add_argument(
|
472 |
+
"--accelerator",
|
473 |
+
type=str,
|
474 |
+
default="gpu",
|
475 |
+
choices=["cpu", "gpu", "tpu", "ipu", "hpu", "auto"],
|
476 |
+
help="accelerator",
|
477 |
+
)
|
478 |
+
parser.add_argument("--devices", type=int, default=4, help="devices num")
|
479 |
+
parser.add_argument(
|
480 |
+
"--fp32", action="store_true", default=False, help="disable mix precision"
|
481 |
+
)
|
482 |
+
parser.add_argument(
|
483 |
+
"--benchmark", action="store_true", default=True, help="enable cudnn benchmark"
|
484 |
+
)
|
485 |
+
parser.add_argument(
|
486 |
+
"--log-step", type=int, default=2, help="log training loss every n steps"
|
487 |
+
)
|
488 |
+
parser.add_argument(
|
489 |
+
"--val-epoch", type=int, default=0.1, help="valid and save every n epoch"
|
490 |
+
)
|
491 |
+
|
492 |
+
opt = parser.parse_args()
|
493 |
+
print(opt)
|
494 |
+
|
495 |
+
main(opt)
|