--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: vivit-videomae-d2 results: [] --- # vivit-videomae-d2 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3393 - Accuracy: 0.3190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 6650 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.5973 | 0.1 | 665 | 2.5600 | 0.0937 | | 2.5359 | 1.1 | 1330 | 2.4382 | 0.1767 | | 2.0681 | 2.1 | 1995 | 2.4175 | 0.2154 | | 2.2863 | 3.1 | 2660 | 2.3472 | 0.2166 | | 2.1409 | 4.1 | 3325 | 2.4337 | 0.2049 | | 2.1223 | 5.1 | 3990 | 2.3414 | 0.2821 | | 2.041 | 6.1 | 4655 | 2.2474 | 0.2054 | | 1.4722 | 7.1 | 5320 | 2.3306 | 0.2925 | | 1.9404 | 8.1 | 5985 | 2.4100 | 0.2897 | | 1.5395 | 9.1 | 6650 | 2.3393 | 0.3190 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3