File size: 3,627 Bytes
4efb3c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_keras_callback
model-index:
- name: Entrnal_5class_agumm_last_newV6_model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Entrnal_5class_agumm_last_newV6_model
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0410
- Train Accuracy: 0.9612
- Train Top-3-accuracy: 0.9962
- Validation Loss: 0.3703
- Validation Accuracy: 0.9623
- Validation Top-3-accuracy: 0.9963
- Epoch: 12
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1209, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 1.0109 | 0.5898 | 0.8913 | 0.5771 | 0.7468 | 0.9576 | 0 |
| 0.4103 | 0.7997 | 0.9708 | 0.4029 | 0.8329 | 0.9786 | 1 |
| 0.2249 | 0.8581 | 0.9827 | 0.3677 | 0.8769 | 0.9857 | 2 |
| 0.1584 | 0.8905 | 0.9877 | 0.3730 | 0.9010 | 0.9893 | 3 |
| 0.1164 | 0.9097 | 0.9904 | 0.3957 | 0.9169 | 0.9913 | 4 |
| 0.0841 | 0.9231 | 0.9920 | 0.3896 | 0.9285 | 0.9927 | 5 |
| 0.0676 | 0.9331 | 0.9932 | 0.3718 | 0.9373 | 0.9937 | 6 |
| 0.0561 | 0.9408 | 0.9941 | 0.3701 | 0.9440 | 0.9944 | 7 |
| 0.0500 | 0.9468 | 0.9947 | 0.3691 | 0.9493 | 0.9949 | 8 |
| 0.0461 | 0.9516 | 0.9952 | 0.3698 | 0.9535 | 0.9954 | 9 |
| 0.0435 | 0.9554 | 0.9956 | 0.3694 | 0.9570 | 0.9958 | 10 |
| 0.0418 | 0.9585 | 0.9959 | 0.3705 | 0.9598 | 0.9961 | 11 |
| 0.0410 | 0.9612 | 0.9962 | 0.3703 | 0.9623 | 0.9963 | 12 |
### Framework versions
- Transformers 4.44.2
- TensorFlow 2.15.1
- Datasets 3.0.0
- Tokenizers 0.19.1
|