Sentence Similarity
Safetensors
Korean
bert
snumin44 commited on
Commit
b23610b
β€’
1 Parent(s): 1ce55ce

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - kakaobrain/kor_nli
5
+ - kakaobrain/kor_nlu
6
+ - klue/klue
7
+ language:
8
+ - ko
9
+ metrics:
10
+ - spearmanr
11
+ - pearsonr
12
+ pipeline_tag: sentence-similarity
13
+ ---
14
+
15
+ # 🍊 SimCSE-KO
16
+
17
+ ## 1. Intro
18
+
19
+ **ν•œκ΅­μ–΄ SimCSE(BERT, Supervised)** λͺ¨λΈμž…λ‹ˆλ‹€.
20
+ Princeton NLP의 μ½”λ“œκ°€ μ•„λ‹Œ μƒˆλ‘œμš΄ μ½”λ“œλ₯Ό μ΄μš©ν•΄ ν•™μŠ΅λ˜μ—ˆμŠ΅λ‹ˆλ‹€.
21
+ 두 λ¬Έμž₯ μ‚¬μ΄μ˜ 코사인 μœ μ‚¬λ„λ₯Ό 계산해 의미적 관련성을 νŒλ‹¨ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
22
+
23
+ - Github: [https://github.com/snumin44/SimCSE-KO](https://github.com/snumin44/SimCSE-KO)
24
+ - Original Code: [https://github.com/princeton-nlp/SimCSE](https://github.com/princeton-nlp/SimCSE)
25
+
26
+
27
+ ## 2. Experiments Settings
28
+
29
+ - Model: klue/bert-base
30
+ - Dataset: KorNLI-train (supervised training), KorSTS-dev (evaluation)
31
+ - epoch: 1
32
+ - max length: 64
33
+ - batch size: 256
34
+ - learning rate: 5e-5
35
+ - drop out: 0.1
36
+ - temp: 0.05
37
+ - pooler: cls
38
+ - 1 A100 GPU
39
+
40
+ ## 3. Performance
41
+
42
+ ## (1) KorSTS-test
43
+ |Model|AVG|Cosine Pearson|Cosine Spearman|Euclidean Pearson|Euclidean Spearman|Manhatten Pearson|Manhatten Spearman|Dot Pearson|Dot Spearman|
44
+ |:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
45
+ |SimCSE-BERT-KO<br>(unsup)|72.85|73.00|72.77|72.96|72.92|72.93|72.86|72.80|72.53|
46
+ |SimCSE-BERT-KO<br>(sup)|**85.98**|**86.05**|**86.00**|**85.88**|**86.08**|**85.90**|**86.08**|**85.96**|**85.89**|
47
+ |SimCSE-RoBERTa-KO<br>(unsup)|75.79|76.39|75.57|75.71|75.52|75.65|75.42|76.41|75.63|
48
+ |SimCSE-RoBERTa-KO<br>(sup)|83.06|82.67|83.21|83.22|83.27|83.24|83.28|82.54|83.03|82.92|
49
+
50
+ ## (2) Klue-dev
51
+ |Model|AVG|Cosine Pearson|Cosine Spearman|Euclidean Pearson|Euclidean Spearman|Manhatten Pearson|Manhatten Spearman|Dot Pearson|Dot Spearman|
52
+ |:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
53
+ |SimCSE-BERT-KO<br>(unsup)|65.27|66.27|64.31|66.18|64.05|66.00|63.77|66.64|64.93|
54
+ |SimCSE-BERT-KO<br>(sup)|**83.96**|**82.98**|**84.32**|**84.32**|**84.30**|**84.28**|**84.20**|**83.00**|**84.29**|
55
+ |SimCSE-RoBERTa-KO<br>(unsup)|80.78|81.20|80.35|81.27|80.36|81.28|80.40|81.13|80.26|
56
+ |SimCSE-RoBERTa-KO<br>(sup)|85.31|84.14|85.64|86.09|85.68|86.04|85.65|83.94|85.30|
57
+
58
+ ## Citing
59
+ ```
60
+ @article{gao2021simcse,
61
+ title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings},
62
+ author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi},
63
+ booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
64
+ year={2021}
65
+ }
66
+ @article{ham2020kornli,
67
+ title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
68
+ author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon},
69
+ journal={arXiv preprint arXiv:2004.03289},
70
+ year={2020}
71
+ }
72
+ ```