--- base_model: microsoft/Phi-3.5-mini-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: Phi-3.5-MultiCap-tool-embedding-step1 results: [] --- # Phi-3.5-MultiCap-tool-embedding-step1 This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7683 | 0.2256 | 50 | 0.7572 | | 0.5568 | 0.4512 | 100 | 0.5648 | | 0.5259 | 0.6768 | 150 | 0.5344 | | 0.5689 | 0.9024 | 200 | 0.5199 | | 0.4983 | 1.1280 | 250 | 0.5107 | | 0.4835 | 1.3536 | 300 | 0.5050 | | 0.4492 | 1.5792 | 350 | 0.5019 | | 0.4918 | 1.8049 | 400 | 0.4996 | | 0.4735 | 2.0305 | 450 | 0.4997 | | 0.4139 | 2.2561 | 500 | 0.5017 | | 0.451 | 2.4817 | 550 | 0.5025 | | 0.4516 | 2.7073 | 600 | 0.5047 | | 0.4586 | 2.9329 | 650 | 0.5086 | | 0.4393 | 3.1585 | 700 | 0.5176 | | 0.4207 | 3.3841 | 750 | 0.5206 | | 0.3999 | 3.6097 | 800 | 0.5249 | | 0.414 | 3.8353 | 850 | 0.5327 | | 0.4002 | 4.0609 | 900 | 0.5408 | | 0.3651 | 4.2865 | 950 | 0.5498 | | 0.3775 | 4.5121 | 1000 | 0.5528 | | 0.4012 | 4.7377 | 1050 | 0.5595 | | 0.3676 | 4.9633 | 1100 | 0.5668 | | 0.3634 | 5.1889 | 1150 | 0.5741 | | 0.3821 | 5.4146 | 1200 | 0.5793 | | 0.3903 | 5.6402 | 1250 | 0.5815 | | 0.3655 | 5.8658 | 1300 | 0.5820 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.4.1+cu124 - Datasets 3.0.0 - Tokenizers 0.19.1