--- base_model: microsoft/Phi-3.5-mini-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: Phi-3.5-MultiCap-tool-embedding results: [] --- # Phi-3.5-MultiCap-tool-embedding This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5080 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6813 | 0.2256 | 50 | 0.6682 | | 0.5534 | 0.4512 | 100 | 0.5627 | | 0.5291 | 0.6768 | 150 | 0.5372 | | 0.575 | 0.9024 | 200 | 0.5245 | | 0.5066 | 1.1280 | 250 | 0.5170 | | 0.4949 | 1.3536 | 300 | 0.5124 | | 0.4666 | 1.5792 | 350 | 0.5095 | | 0.5142 | 1.8049 | 400 | 0.5080 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1