--- base_model: gmonsoon/Darcy-7b license: apache-2.0 merged_models: - macadeliccc/WestLake-7B-v2-laser-truthy-dpo - FelixChao/WestSeverus-7B-DPO-v2 - FelixChao/Faraday-7B model_creator: gmonsoon model_name: Darcy-7b model_type: mistral pipeline_tag: text-generation quantized_by: Suparious tags: - merge - mergekit - lazymergekit - macadeliccc/WestLake-7B-v2-laser-truthy-dpo - FelixChao/WestSeverus-7B-DPO-v2 - FelixChao/Faraday-7B --- # Darcy-7b - AWQ - Model creator: [gmonsoon](https://huggingface.co/gmonsoon) - Original model: [Darcy-7b](https://huggingface.co/gmonsoon/Darcy-7b) ## Model description Darcy-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing). - [macadeliccc/WestLake-7B-v2-laser-truthy-dpo](https://huggingface.co/macadeliccc/WestLake-7B-v2-laser-truthy-dpo) - [FelixChao/WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2) - [FelixChao/Faraday-7B](https://huggingface.co/FelixChao/Faraday-7B) ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code