Suparious commited on
Commit
22f7362
1 Parent(s): 2ee7043

update model card

Browse files
Files changed (1) hide show
  1. README.md +113 -1
README.md CHANGED
@@ -1,3 +1,115 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: []
3
+ library_name: transformers
4
+ tags:
5
+ - quantized
6
+ - 4-bit
7
+ - AWQ
8
+ - transformers
9
+ - pytorch
10
+ - mistral
11
+ - text-generation
12
+ - conversational
13
+ - autotrain_compatible
14
+ - endpoints_compatible
15
+ - text-generation-inference
16
+ - chatml
17
+ license: other
18
+ language:
19
+ - en
20
+ model_creator: ChaoticNeutrals
21
+ model_name: Eris_Remix_7B
22
+ model_type: mistral
23
+ pipeline_tag: text-generation
24
+ inference: false
25
+ prompt_template: '<|im_start|>system
26
+
27
+ {system_message}<|im_end|>
28
+
29
+ <|im_start|>user
30
+
31
+ {prompt}<|im_end|>
32
+
33
+ <|im_start|>assistant
34
+
35
+ '
36
+ quantized_by: Suparious
37
  ---
38
+ # ChaoticNeutrals/Eris-Remix-7B-DPO AWQ
39
+
40
+ - Model creator: [ChaoticNeutrals](https://huggingface.co/ChaoticNeutrals)
41
+ - Original model: [Eris-Remix-7B-DPO](https://huggingface.co/ChaoticNeutrals/Eris_Remix_DPO_7B)
42
+
43
+ ## Model Summary
44
+
45
+ ## How to use
46
+
47
+ ### Install the necessary packages
48
+
49
+ ```bash
50
+ pip install --upgrade autoawq autoawq-kernels
51
+ ```
52
+
53
+ ### Example Python code
54
+
55
+ ```python
56
+ from awq import AutoAWQForCausalLM
57
+ from transformers import AutoTokenizer, TextStreamer
58
+
59
+ model_path = "solidrust/Eris-Remix-7B-DPO-AWQ"
60
+ system_message = "You are Dolphin, a helpful AI assistant."
61
+
62
+ # Load model
63
+ model = AutoAWQForCausalLM.from_quantized(model_path,
64
+ fuse_layers=True)
65
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
66
+ trust_remote_code=True)
67
+ streamer = TextStreamer(tokenizer,
68
+ skip_prompt=True,
69
+ skip_special_tokens=True)
70
+
71
+ # Convert prompt to tokens
72
+ prompt_template = """\
73
+ <|im_start|>system
74
+ {system_message}<|im_end|>
75
+ <|im_start|>user
76
+ {prompt}<|im_end|>
77
+ <|im_start|>assistant"""
78
+
79
+ prompt = "You're standing on the surface of the Earth. "\
80
+ "You walk one mile south, one mile west and one mile north. "\
81
+ "You end up exactly where you started. Where are you?"
82
+
83
+ tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
84
+ return_tensors='pt').input_ids.cuda()
85
+
86
+ # Generate output
87
+ generation_output = model.generate(tokens,
88
+ streamer=streamer,
89
+ max_new_tokens=512)
90
+
91
+ ```
92
+
93
+ ### About AWQ
94
+
95
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
96
+
97
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
98
+
99
+ It is supported by:
100
+
101
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
102
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
103
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
104
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
105
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
106
+
107
+ ## Prompt template: ChatML
108
+
109
+ ```plaintext
110
+ <|im_start|>system
111
+ {system_message}<|im_end|>
112
+ <|im_start|>user
113
+ {prompt}<|im_end|>
114
+ <|im_start|>assistant
115
+ ```