--- base_model: cognitivecomputations/dolphin-2.8-experiment26-7b language: - en license: apache-2.0 datasets: - ehartford/dolphin - jondurbin/airoboros-2.2.1 - ehartford/dolphin-coder - teknium/openhermes - m-a-p/Code-Feedback tags: - quantized - 4-bit - AWQ - transformers - pytorch - mistral - text-generation - conversational - license:apache-2.0 - autotrain_compatible - endpoints_compatible - text-gen library_name: transformers model_creator: hydra-project model_name: ChatHercules-2.5-Mistral-7B model_type: mistral pipeline_tag: text-generation inference: false prompt_template: '<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ' quantized_by: Suparious --- # cognitivecomputations/dolphin-2.8-experiment26-7b AWQ - Model creator: [cognitivecomputations](https://huggingface.co/cognitivecomputations) - Original model: [dolphin-2.8-experiment26-7b](https://huggingface.co/cognitivecomputations/dolphin-2.8-experiment26-7b) ## Model Summary Sponsored by [MassedCompute](https://massedcompute.com/) Discord https://discord.gg/cognitivecomputations This model is based on [Experiment-26 by Yam Peleg](https://huggingface.co/yam-peleg/Experiment26-7B). The base model has 16k context This Dolphin is *really good* at coding, @ehartford trained this with a lot of coding data. It took 3 days to train 3 epochs on 7x A6000s using qlora on Axolotl ## How to use ### Install the necessary packages ```bash pip install --upgrade autoawq autoawq-kernels ``` ### Example Python code ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, TextStreamer model_path = "solidrust/dolphin-2.8-experiment26-7b-AWQ" system_message = "You are Hercules, incarnated as a powerful AI." # Load model model = AutoAWQForCausalLM.from_quantized(model_path, fuse_layers=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Convert prompt to tokens prompt_template = """\ <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant""" prompt = "You're standing on the surface of the Earth. "\ "You walk one mile south, one mile west and one mile north. "\ "You end up exactly where you started. Where are you?" tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt), return_tensors='pt').input_ids.cuda() # Generate output generation_output = model.generate(tokens, streamer=streamer, max_new_tokens=512) ``` ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code ## Prompt template: ChatML ```plaintext <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ```