File size: 2,033 Bytes
b0c9883 f78487a b0c9883 f78487a b0c9883 f1e920c f78487a b0c9883 e071a97 f78487a b0c9883 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- ASR
- Papiamentu
- Whisper
- Speech Recognition
- generated_from_trainer
datasets:
- sonnygeorge/papi_asr_corpus
metrics:
- wer
model-index:
- name: Whisper Tiny Papiamentu
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Papi ASR
type: sonnygeorge/papi_asr_corpus
metrics:
- name: Wer
type: wer
value: 34.88457850873958
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny Papiamentu
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Papi ASR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3812
- Wer: 34.8846
- Cer: 17.4600
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 3
- training_steps: 200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 0.3142 | 0.07 | 50 | 0.4591 | 47.0684 | 29.9418 |
| 0.331 | 0.15 | 100 | 0.4139 | 37.9527 | 19.3123 |
| 0.3721 | 0.22 | 150 | 0.3897 | 34.8403 | 16.6445 |
| 0.3802 | 0.3 | 200 | 0.3812 | 34.8846 | 17.4600 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|