File size: 8,409 Bytes
02a3ef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import os
import shutil
import numpy as np
import torch
# from trixi.util import Config, GridSearch


def check_attributes(object_, attributes):

    missing = []
    for attr in attributes:
        if not hasattr(object_, attr):
            missing.append(attr)
    if len(missing) > 0:
        return False
    else:
        return True


def set_seeds(seed, cuda=True):
    if not hasattr(seed, "__iter__"):
        seed = (seed, seed, seed)
    np.random.seed(seed[0])
    torch.manual_seed(seed[1])
    if cuda: torch.cuda.manual_seed_all(seed[2])


def make_onehot(array, labels=None, axis=1, newaxis=False):

    # get labels if necessary
    if labels is None:
        labels = np.unique(array)
        labels = list(map(lambda x: x.item(), labels))

    # get target shape
    new_shape = list(array.shape)
    if newaxis:
        new_shape.insert(axis, len(labels))
    else:
        new_shape[axis] = new_shape[axis] * len(labels)

    # make zero array
    if type(array) == np.ndarray:
        new_array = np.zeros(new_shape, dtype=array.dtype)
    elif torch.is_tensor(array):
        new_array = torch.zeros(new_shape, dtype=array.dtype, device=array.device)
    else:
        raise TypeError("Onehot conversion undefined for object of type {}".format(type(array)))

    # fill new array
    n_seg_channels = 1 if newaxis else array.shape[axis]
    for seg_channel in range(n_seg_channels):
        for l, label in enumerate(labels):
            new_slc = [slice(None), ] * len(new_shape)
            slc = [slice(None), ] * len(array.shape)
            new_slc[axis] = seg_channel * len(labels) + l
            if not newaxis:
                slc[axis] = seg_channel
            new_array[tuple(new_slc)] = array[tuple(slc)] == label

    return new_array


def match_to(x, ref, keep_axes=(1,)):

    target_shape = list(ref.shape)
    for i in keep_axes:
        target_shape[i] = x.shape[i]
    target_shape = tuple(target_shape)
    if x.shape == target_shape:
        pass
    if x.dim() == 1:
        x = x.unsqueeze(0)
    if x.dim() == 2:
        while x.dim() < len(target_shape):
            x = x.unsqueeze(-1)

    x = x.expand(*target_shape)
    x = x.to(device=ref.device, dtype=ref.dtype)

    return x


def make_slices(original_shape, patch_shape):

    working_shape = original_shape[-len(patch_shape):]
    splits = []
    for i in range(len(working_shape)):
        splits.append([])
        for j in range(working_shape[i] // patch_shape[i]):
            splits[i].append(slice(j*patch_shape[i], (j+1)*patch_shape[i]))
        rest = working_shape[i] % patch_shape[i]
        if rest > 0:
            splits[i].append(slice((j+1)*patch_shape[i], (j+1)*patch_shape[i] + rest))

    # now we have all slices for the individual dimensions
    # we need their combinatorial combinations
    slices = list(itertools.product(*splits))
    for i in range(len(slices)):
        slices[i] = [slice(None), ] * (len(original_shape) - len(patch_shape)) + list(slices[i])

    return slices


def coordinate_grid_samples(mean, std, factor_std=5, scale_std=1.):

    relative = np.linspace(-scale_std*factor_std, scale_std*factor_std, 2*factor_std+1)
    positions = np.array([mean + i * std for i in relative]).T
    axes = np.meshgrid(*positions)
    axes = map(lambda x: list(x.ravel()), axes)
    samples = list(zip(*axes))
    samples = list(map(np.array, samples))

    return samples


def get_default_experiment_parser():

    parser = argparse.ArgumentParser()
    parser.add_argument("base_dir", type=str, help="Working directory for experiment.")
    parser.add_argument("-c", "--config", type=str, default=None, help="Path to a config file.")
    parser.add_argument("-v", "--visdomlogger", action="store_true", help="Use visdomlogger.")
    parser.add_argument("-tx", "--tensorboardxlogger", type=str, default=None)
    parser.add_argument("-tl", "--telegramlogger", action="store_true")
    parser.add_argument("-dc", "--default_config", type=str, default="DEFAULTS", help="Select a default Config")
    parser.add_argument("-ad", "--automatic_description", action="store_true")
    parser.add_argument("-r", "--resume", type=str, default=None, help="Path to resume from")
    parser.add_argument("-irc", "--ignore_resume_config", action="store_true", help="Ignore Config in experiment we resume from.")
    parser.add_argument("-test", "--test", action="store_true", help="Run test instead of training")
    parser.add_argument("-g", "--grid", type=str, help="Path to a config for grid search")
    parser.add_argument("-s", "--skip_existing", action="store_true", help="Skip configs for which an experiment exists, only for grid search")
    parser.add_argument("-m", "--mods", type=str, nargs="+", default=None, help="Mods are Config stubs to update only relevant parts for a certain setup.")
    parser.add_argument("-ct", "--copy_test", action="store_true", help="Copy test files to original experiment.")

    return parser


def run_experiment(experiment, configs, args, mods=None, **kwargs):

    # set a few defaults
    if "explogger_kwargs" not in kwargs:
        kwargs["explogger_kwargs"] = dict(folder_format="{experiment_name}_%Y%m%d-%H%M%S")
    if "explogger_freq" not in kwargs:
        kwargs["explogger_freq"] = 1
    if "resume_save_types" not in kwargs:
        kwargs["resume_save_types"] = ("model", "simple", "th_vars", "results")

    config = Config(file_=args.config) if args.config is not None else Config()
    config.update_missing(configs[args.default_config].deepcopy())
    if args.mods is not None and mods is not None:
        for mod in args.mods:
            config.update(mods[mod])
    config = Config(config=config, update_from_argv=True)

    # GET EXISTING EXPERIMENTS TO BE ABLE TO SKIP CERTAIN CONFIGS
    if args.skip_existing:
        existing_configs = []
        for exp in os.listdir(args.base_dir):
            try:
                existing_configs.append(Config(file_=os.path.join(args.base_dir, exp, "config", "config.json")))
            except Exception as e:
                pass

    if args.grid is not None:
        grid = GridSearch().read(args.grid)
    else:
        grid = [{}]

    for combi in grid:

        config.update(combi)

        if args.skip_existing:
            skip_this = False
            for existing_config in existing_configs:
                if existing_config.contains(config):
                    skip_this = True
                    break
            if skip_this:
                continue

        if "backup_every" in config:
            kwargs["save_checkpoint_every_epoch"] = config["backup_every"]

        loggers = {}
        if args.visdomlogger:
            loggers["v"] = ("visdom", {}, 1)
        if args.tensorboardxlogger is not None:
            if args.tensorboardxlogger == "same":
                loggers["tx"] = ("tensorboard", {}, 1)
            else:
                loggers["tx"] = ("tensorboard", {"target_dir": args.tensorboardxlogger}, 1)

        if args.telegramlogger:
            kwargs["use_telegram"] = True

        if args.automatic_description:
            difference_to_default = Config.difference_config_static(config, configs["DEFAULTS"]).flat(keep_lists=True, max_split_size=0, flatten_int=True)
            description_str = ""
            for key, val in difference_to_default.items():
                val = val[0]
                description_str = "{} = {}\n{}".format(key, val, description_str)
            config.description = description_str

        exp = experiment(config=config,
                         base_dir=args.base_dir,
                         resume=args.resume,
                         ignore_resume_config=args.ignore_resume_config,
                         loggers=loggers,
                         **kwargs)

        trained = False
        if args.resume is None or args.test is False:
            exp.run()
            trained = True
        if args.test:
            exp.run_test(setup=not trained)
            if isinstance(args.resume, str) and exp.elog is not None and args.copy_test:
                for f in glob.glob(os.path.join(exp.elog.save_dir, "test*")):
                    if os.path.isdir(f):
                        shutil.copytree(f, os.path.join(args.resume, "save", os.path.basename(f)))
                    else:
                        shutil.copy(f, os.path.join(args.resume, "save"))