import time from math import ceil import warnings import torch import pytorch_lightning as pl from torch_ema import ExponentialMovingAverage from sgmse import sampling from sgmse.sdes import SDERegistry from sgmse.backbones import BackboneRegistry from sgmse.util.inference import evaluate_model from sgmse.util.other import pad_spec class ScoreModel(pl.LightningModule): @staticmethod def add_argparse_args(parser): parser.add_argument("--lr", type=float, default=1e-4, help="The learning rate (1e-4 by default)") parser.add_argument("--ema_decay", type=float, default=0.999, help="The parameter EMA decay constant (0.999 by default)") parser.add_argument("--t_eps", type=float, default=0.03, help="The minimum process time (0.03 by default)") parser.add_argument("--num_eval_files", type=int, default=20, help="Number of files for speech enhancement performance evaluation during training. Pass 0 to turn off (no checkpoints based on evaluation metrics will be generated).") parser.add_argument("--loss_type", type=str, default="mse", choices=("mse", "mae"), help="The type of loss function to use.") return parser def __init__( self, backbone, sde, lr=1e-4, ema_decay=0.999, t_eps=0.03, num_eval_files=20, loss_type='mse', data_module_cls=None, **kwargs ): """ Create a new ScoreModel. Args: backbone: Backbone DNN that serves as a score-based model. sde: The SDE that defines the diffusion process. lr: The learning rate of the optimizer. (1e-4 by default). ema_decay: The decay constant of the parameter EMA (0.999 by default). t_eps: The minimum time to practically run for to avoid issues very close to zero (1e-5 by default). loss_type: The type of loss to use (wrt. noise z/std). Options are 'mse' (default), 'mae' """ super().__init__() # Initialize Backbone DNN self.backbone = backbone dnn_cls = BackboneRegistry.get_by_name(backbone) self.dnn = dnn_cls(**kwargs) # Initialize SDE sde_cls = SDERegistry.get_by_name(sde) self.sde = sde_cls(**kwargs) # Store hyperparams and save them self.lr = lr self.ema_decay = ema_decay self.ema = ExponentialMovingAverage(self.parameters(), decay=self.ema_decay) self._error_loading_ema = False self.t_eps = t_eps self.loss_type = loss_type self.num_eval_files = num_eval_files self.save_hyperparameters(ignore=['no_wandb']) self.data_module = data_module_cls(**kwargs, gpu=kwargs.get('gpus', 0) > 0) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.lr) return optimizer def optimizer_step(self, *args, **kwargs): # Method overridden so that the EMA params are updated after each optimizer step super().optimizer_step(*args, **kwargs) self.ema.update(self.parameters()) # on_load_checkpoint / on_save_checkpoint needed for EMA storing/loading def on_load_checkpoint(self, checkpoint): ema = checkpoint.get('ema', None) if ema is not None: self.ema.load_state_dict(checkpoint['ema']) else: self._error_loading_ema = True warnings.warn("EMA state_dict not found in checkpoint!") def on_save_checkpoint(self, checkpoint): checkpoint['ema'] = self.ema.state_dict() def train(self, mode, no_ema=False): res = super().train(mode) # call the standard `train` method with the given mode if not self._error_loading_ema: if mode == False and not no_ema: # eval self.ema.store(self.parameters()) # store current params in EMA self.ema.copy_to(self.parameters()) # copy EMA parameters over current params for evaluation else: # train if self.ema.collected_params is not None: self.ema.restore(self.parameters()) # restore the EMA weights (if stored) return res def eval(self, no_ema=False): return self.train(False, no_ema=no_ema) def _loss(self, err): if self.loss_type == 'mse': losses = torch.square(err.abs()) elif self.loss_type == 'mae': losses = err.abs() # taken from reduce_op function: sum over channels and position and mean over batch dim # presumably only important for absolute loss number, not for gradients loss = torch.mean(0.5*torch.sum(losses.reshape(losses.shape[0], -1), dim=-1)) return loss def _step(self, batch, batch_idx): x, y = batch t = torch.rand(x.shape[0], device=x.device) * (self.sde.T - self.t_eps) + self.t_eps mean, std = self.sde.marginal_prob(x, t, y) z = torch.randn_like(x) # i.i.d. normal distributed with var=0.5 sigmas = std[:, None, None, None] perturbed_data = mean + sigmas * z score = self(perturbed_data, t, y) err = score * sigmas + z loss = self._loss(err) return loss def training_step(self, batch, batch_idx): loss = self._step(batch, batch_idx) self.log('train_loss', loss, on_step=True, on_epoch=True) return loss def validation_step(self, batch, batch_idx): loss = self._step(batch, batch_idx) self.log('valid_loss', loss, on_step=False, on_epoch=True) # Evaluate speech enhancement performance if batch_idx == 0 and self.num_eval_files != 0: pesq, si_sdr, estoi = evaluate_model(self, self.num_eval_files) self.log('pesq', pesq, on_step=False, on_epoch=True) self.log('si_sdr', si_sdr, on_step=False, on_epoch=True) self.log('estoi', estoi, on_step=False, on_epoch=True) return loss def forward(self, x, t, y): # Concatenate y as an extra channel dnn_input = torch.cat([x, y], dim=1) # the minus is most likely unimportant here - taken from Song's repo score = -self.dnn(dnn_input, t) return score def to(self, *args, **kwargs): """Override PyTorch .to() to also transfer the EMA of the model weights""" self.ema.to(*args, **kwargs) return super().to(*args, **kwargs) def get_pc_sampler(self, predictor_name, corrector_name, y, N=None, minibatch=None, **kwargs): N = self.sde.N if N is None else N sde = self.sde.copy() sde.N = N kwargs = {"eps": self.t_eps, **kwargs} if minibatch is None: return sampling.get_pc_sampler(predictor_name, corrector_name, sde=sde, score_fn=self, y=y, **kwargs) else: M = y.shape[0] def batched_sampling_fn(): samples, ns = [], [] for i in range(int(ceil(M / minibatch))): y_mini = y[i*minibatch:(i+1)*minibatch] sampler = sampling.get_pc_sampler(predictor_name, corrector_name, sde=sde, score_fn=self, y=y_mini, **kwargs) sample, n = sampler() samples.append(sample) ns.append(n) samples = torch.cat(samples, dim=0) return samples, ns return batched_sampling_fn def get_ode_sampler(self, y, N=None, minibatch=None, **kwargs): N = self.sde.N if N is None else N sde = self.sde.copy() sde.N = N kwargs = {"eps": self.t_eps, **kwargs} if minibatch is None: return sampling.get_ode_sampler(sde, self, y=y, **kwargs) else: M = y.shape[0] def batched_sampling_fn(): samples, ns = [], [] for i in range(int(ceil(M / minibatch))): y_mini = y[i*minibatch:(i+1)*minibatch] sampler = sampling.get_ode_sampler(sde, self, y=y_mini, **kwargs) sample, n = sampler() samples.append(sample) ns.append(n) samples = torch.cat(samples, dim=0) return sample, ns return batched_sampling_fn def train_dataloader(self): return self.data_module.train_dataloader() def val_dataloader(self): return self.data_module.val_dataloader() def test_dataloader(self): return self.data_module.test_dataloader() def setup(self, stage=None): return self.data_module.setup(stage=stage) def to_audio(self, spec, length=None): return self._istft(self._backward_transform(spec), length) def _forward_transform(self, spec): return self.data_module.spec_fwd(spec) def _backward_transform(self, spec): return self.data_module.spec_back(spec) def _stft(self, sig): return self.data_module.stft(sig) def _istft(self, spec, length=None): return self.data_module.istft(spec, length) def enhance(self, y, sampler_type="pc", predictor="reverse_diffusion", corrector="ald", N=30, corrector_steps=1, snr=0.5, timeit=False, **kwargs ): """ One-call speech enhancement of noisy speech `y`, for convenience. """ sr=16000 start = time.time() T_orig = y.size(1) norm_factor = y.abs().max().item() y = y / norm_factor Y = torch.unsqueeze(self._forward_transform(self._stft(y.cuda())), 0) Y = pad_spec(Y) if sampler_type == "pc": sampler = self.get_pc_sampler(predictor, corrector, Y.cuda(), N=N, corrector_steps=corrector_steps, snr=snr, intermediate=False, **kwargs) elif sampler_type == "ode": sampler = self.get_ode_sampler(Y.cuda(), N=N, **kwargs) else: print("{} is not a valid sampler type!".format(sampler_type)) sample, nfe = sampler() x_hat = self.to_audio(sample.squeeze(), T_orig) x_hat = x_hat * norm_factor x_hat = x_hat.squeeze().cpu().numpy() end = time.time() if timeit: rtf = (end-start)/(len(x_hat)/sr) return x_hat, nfe, rtf else: return x_hat