import os from glob import glob from librosa import load from librosa.core import resample import argparse from argparse import ArgumentParser from pathlib import Path import numpy as np from soundfile import write from tqdm import tqdm # Python script for generating noisy mixtures for training # # Mix WSJ0 with CHiME3 noise with SNR sampled uniformly in [min_snr, max_snr] min_snr = 0 max_snr = 20 sr = 16000 if __name__ == '__main__': parser = ArgumentParser() parser.add_argument("wsj0", type=str, help='path to WSJ0 directory') parser.add_argument("chime3", type=str, help='path to CHiME3 directory') parser.add_argument("target", type=str, help='target path for training files') args = parser.parse_args() # Clean speech for training train_speech_files = sorted(glob(args.wsj0 + '**/si_tr_s/**/*.wav', recursive=True)) valid_speech_files = sorted(glob(args.wsj0 + '**/si_dt_05/**/*.wav', recursive=True)) test_speech_files = sorted(glob(args.wsj0 + '**/si_et_05/**/*.wav', recursive=True)) noise_files = glob(args.chime3 + '**/backgrounds/*.wav', recursive=True) noise_files = [file for file in noise_files if (file[-7:-4] == "CH1")] # Load CHiME3 noise files noises = [] print('Loading CHiME3 noise files') for file in noise_files: noise = load(file, sr=None)[0] noises.append(noise) # Create target dir train_clean_path = Path(os.path.join(args.target, 'train/clean')) train_noisy_path = Path(os.path.join(args.target, 'train/noisy')) valid_clean_path = Path(os.path.join(args.target, 'valid/clean')) valid_noisy_path = Path(os.path.join(args.target, 'valid/noisy')) test_clean_path = Path(os.path.join(args.target, 'test/clean')) test_noisy_path = Path(os.path.join(args.target, 'test/noisy')) train_clean_path.mkdir(parents=True, exist_ok=True) train_noisy_path.mkdir(parents=True, exist_ok=True) valid_clean_path.mkdir(parents=True, exist_ok=True) valid_noisy_path.mkdir(parents=True, exist_ok=True) test_clean_path.mkdir(parents=True, exist_ok=True) test_noisy_path.mkdir(parents=True, exist_ok=True) # Initialize seed for reproducability np.random.seed(0) # Create files for training print('Create training files') for i, speech_file in enumerate(tqdm(train_speech_files)): s, _ = load(speech_file, sr=sr) snr_dB = np.random.uniform(min_snr, max_snr) noise_ind = np.random.randint(len(noises)) speech_power = 1/len(s)*np.sum(s**2) n = noises[noise_ind] start = np.random.randint(len(n)-len(s)) n = n[start:start+len(s)] noise_power = 1/len(n)*np.sum(n**2) noise_power_target = speech_power*np.power(10,-snr_dB/10) k = noise_power_target / noise_power n = n * np.sqrt(k) x = s + n file_name = speech_file.split('/')[-1] write(os.path.join(train_clean_path, file_name), s, sr) write(os.path.join(train_noisy_path, file_name), x, sr) # Create files for validation print('Create validation files') for i, speech_file in enumerate(tqdm(valid_speech_files)): s, _ = load(speech_file, sr=sr) snr_dB = np.random.uniform(min_snr, max_snr) noise_ind = np.random.randint(len(noises)) speech_power = 1/len(s)*np.sum(s**2) n = noises[noise_ind] start = np.random.randint(len(n)-len(s)) n = n[start:start+len(s)] noise_power = 1/len(n)*np.sum(n**2) noise_power_target = speech_power*np.power(10,-snr_dB/10) k = noise_power_target / noise_power n = n * np.sqrt(k) x = s + n file_name = speech_file.split('/')[-1] write(os.path.join(valid_clean_path, file_name), s, sr) write(os.path.join(valid_noisy_path, file_name), x, sr) # Create files for test print('Create test files') for i, speech_file in enumerate(tqdm(test_speech_files)): s, _ = load(speech_file, sr=sr) snr_dB = np.random.uniform(min_snr, max_snr) noise_ind = np.random.randint(len(noises)) speech_power = 1/len(s)*np.sum(s**2) n = noises[noise_ind] start = np.random.randint(len(n)-len(s)) n = n[start:start+len(s)] noise_power = 1/len(n)*np.sum(n**2) noise_power_target = speech_power*np.power(10,-snr_dB/10) k = noise_power_target / noise_power n = n * np.sqrt(k) x = s + n file_name = speech_file.split('/')[-1] write(os.path.join(test_clean_path, file_name), s, sr) write(os.path.join(test_noisy_path, file_name), x, sr)