import html
import os
import time
import torch
import transformers
import gradio as gr
class FormRow(FormComponent, gr.Row):
"""Same as gr.Row but fits inside gradio forms"""
def get_block_name(self):
return "row"
def wrap_gradio_gpu_call(func, extra_outputs=None):
def f(*args, **kwargs):
res = func(*args, **kwargs)
return res
return wrap_gradio_call(f, extra_outputs=extra_outputs, add_stats=True)
class Model:
name = None
model = None
tokenizer = None
available_models = ["0Tick/e621TagAutocomplete","0Tick/danbooruTagAutocomplete"]
current = Model()
job_count = 1
base_dir = scripts.basedir()
models_dir = os.path.join(base_dir, "models")
def device():
return devices.cpu
def get_model_path(name):
dirname = os.path.join(models_dir, name)
if not os.path.isdir(dirname):
return name
return dirname
def generate_batch(input_ids, min_length, max_length, num_beams, temperature, repetition_penalty, length_penalty, sampling_mode, top_k, top_p):
top_p = float(top_p) if sampling_mode == 'Top P' else None
top_k = int(top_k) if sampling_mode == 'Top K' else None
outputs = current.model.generate(
input_ids,
do_sample=True,
temperature=max(float(temperature), 1e-6),
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
top_p=top_p,
top_k=top_k,
num_beams=int(num_beams),
min_length=min_length,
max_length=max_length,
pad_token_id=current.tokenizer.pad_token_id or current.tokenizer.eos_token_id
)
texts = current.tokenizer.batch_decode(outputs, skip_special_tokens=True)
return texts
def model_selection_changed(model_name):
if model_name == "None":
current.tokenizer = None
current.model = None
current.name = None
devices.torch_gc()
def generate(id_task, model_name, batch_count, batch_size, text, *args):
job_count = batch_count
if current.name != model_name:
current.tokenizer = None
current.model = None
current.name = None
if model_name != 'None':
path = get_model_path(model_name)
current.tokenizer = transformers.AutoTokenizer.from_pretrained(path)
current.model = transformers.AutoModelForCausalLM.from_pretrained(path)
current.name = model_name
assert current.model, 'No model available'
assert current.tokenizer, 'No tokenizer available'
current.model.to(device())
input_ids = current.tokenizer(text, return_tensors="pt").input_ids
if input_ids.shape[1] == 0:
input_ids = torch.asarray([[current.tokenizer.bos_token_id]], dtype=torch.long)
input_ids = input_ids.to(device())
input_ids = input_ids.repeat((batch_size, 1))
markup = '
'
index = 0
for i in range(batch_count):
texts = generate_batch(input_ids, *args)
for generated_text in texts:
index += 1
markup += f"""
{html.escape(generated_text)}
|
copy
"""
markup += '
'
return markup, ''
list_available_models()
with gr.Blocks(analytics_enabled=False) as space:
with gr.Row():
with gr.Column(scale=80):
prompt = gr.Textbox(label="Prompt", elem_id="promptgen_prompt", show_label=False, lines=2, placeholder="Beginning of the prompt (press Ctrl+Enter or Alt+Enter to generate)").style(container=False)
with gr.Column(scale=10):
submit = gr.Button('Generate', elem_id="promptgen_generate", variant='primary')
with gr.Row(elem_id="promptgen_main"):
with gr.Column(variant="compact"):
selected_text = gr.TextArea(elem_id='promptgen_selected_text', visible=False)
with FormRow():
model_selection = gr.Dropdown(label="Model", elem_id="promptgen_model", value=available_models[0], choices=["None"] + available_models)
with FormRow():
sampling_mode = gr.Radio(label="Sampling mode", elem_id="promptgen_sampling_mode", value="Top K", choices=["Top K", "Top P"])
top_k = gr.Slider(label="Top K", elem_id="promptgen_top_k", value=12, minimum=1, maximum=50, step=1)
top_p = gr.Slider(label="Top P", elem_id="promptgen_top_p", value=0.15, minimum=0, maximum=1, step=0.001)
with gr.Row():
num_beams = gr.Slider(label="Number of beams", elem_id="promptgen_num_beams", value=1, minimum=1, maximum=8, step=1)
temperature = gr.Slider(label="Temperature", elem_id="promptgen_temperature", value=1, minimum=0, maximum=4, step=0.01)
repetition_penalty = gr.Slider(label="Repetition penalty", elem_id="promptgen_repetition_penalty", value=1, minimum=1, maximum=4, step=0.01)
with FormRow():
length_penalty = gr.Slider(label="Length preference", elem_id="promptgen_length_preference", value=1, minimum=-10, maximum=10, step=0.1)
min_length = gr.Slider(label="Min length", elem_id="promptgen_min_length", value=20, minimum=1, maximum=400, step=1)
max_length = gr.Slider(label="Max length", elem_id="promptgen_max_length", value=150, minimum=1, maximum=400, step=1)
with FormRow():
batch_count = gr.Slider(label="Batch count", elem_id="promptgen_batch_count", value=1, minimum=1, maximum=100, step=1)
batch_size = gr.Slider(label="Batch size", elem_id="promptgen_batch_size", value=10, minimum=1, maximum=100, step=1)
with gr.Column():
with gr.Group(elem_id="promptgen_results_column"):
res = gr.HTML()
res_info = gr.HTML()
submit.click(
fn=generate(extra_outputs=['']),
_js="submit_promptgen",
inputs=[model_selection, model_selection, batch_count, batch_size, prompt, min_length, max_length, num_beams, temperature, repetition_penalty, length_penalty, sampling_mode, top_k, top_p, ],
outputs=[res, res_info]
)
model_selection.change(
fn=model_selection_changed,
inputs=[model_selection],
outputs=[],
)
space.launch()