0x7o's picture
Update app.py
80c63c5 verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
import spaces
from threading import Thread
from typing import Iterator
model_id = "mistralai/Mistral-Nemo-Instruct-2407"
MAX_INPUT_TOKEN_LENGTH = 4096
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
load_in_8bit=True
)
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
num_beams=1
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Set up Gradio interface
iface = gr.ChatInterface(
generate,
chatbot=gr.Chatbot(height=600),
textbox=gr.Textbox(placeholder="Enter your message here...", container=False, scale=7),
title="Chat with Mistral Nemo",
description="This is a chat interface for the Mistral Nemo model. Ask questions and get answers!",
retry_btn="Retry",
undo_btn="Undo Last",
clear_btn="Clear",
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Maximum number of new tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
# Launch the interface
iface.launch()