#!/usr/bin/env python import os import random import gradio as gr import numpy as np import PIL.Image import torch import torchvision.transforms.functional as TF from diffusers import ( AutoencoderKL, EulerAncestralDiscreteScheduler, StableDiffusionXLAdapterPipeline, T2IAdapter, ) from modelscope.pipelines import pipeline from modelscope.outputs import OutputKeys DESCRIPTION = '''# doodle2vid Combining T2I-Adapter-SDXL with MS-Image2Video to create a doodle to video pipeline. Shout-out to [fffiloni](https://huggingface.co/fffiloni) & [ARC Lab, Tencent PCG](https://huggingface.co/TencentARC) 🗣️ How to use: Draw a doodle in the canvas, and click "Run" to generate a video. You can also provide a prompt with more details and choose a style. ''' if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" style_list = [ { "name": "(No style)", "prompt": "{prompt}", "negative_prompt": "", }, { "name": "Cinematic", "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", }, { "name": "3D Model", "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", }, { "name": "Anime", "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", }, { "name": "Digital Art", "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", "negative_prompt": "photo, photorealistic, realism, ugly", }, { "name": "Photographic", "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", }, { "name": "Pixel art", "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", }, { "name": "Fantasy art", "prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", }, { "name": "Neonpunk", "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", }, { "name": "Manga", "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", }, ] styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} STYLE_NAMES = list(styles.keys()) DEFAULT_STYLE_NAME = "(No style)" def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) return p.replace("{prompt}", positive), n + negative device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): model_id = "stabilityai/stable-diffusion-xl-base-1.0" adapter = T2IAdapter.from_pretrained( "TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16" ) scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionXLAdapterPipeline.from_pretrained( model_id, vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16), adapter=adapter, scheduler=scheduler, torch_dtype=torch.float16, variant="fp16", ) pipe.to(device) else: pipe = None MAX_SEED = np.iinfo(np.int32).max video_pipe = pipeline(task='image-to-video', model='damo/Image-to-Video', model_revision='v1.1.0') def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def inferVideo(image: PIL.Image.Image) -> str: # Save the passed image to a temp file temp_path = "temp_input_image.png" image.save(temp_path) output_video_path = video_pipe(temp_path, output_video='output.mp4')[OutputKeys.OUTPUT_VIDEO] print(output_video_path) return output_video_path def inferImage( image: PIL.Image.Image, prompt: str, negative_prompt: str, style_name: str = DEFAULT_STYLE_NAME, num_steps: int = 25, guidance_scale: float = 5, adapter_conditioning_scale: float = 0.8, adapter_conditioning_factor: float = 0.8, seed: int = 0, progress=gr.Progress(track_tqdm=True), ) -> PIL.Image.Image: image = image.convert("RGB") image = TF.to_tensor(image) > 0.5 image = TF.to_pil_image(image.to(torch.float32)) prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) generator = torch.Generator(device=device).manual_seed(seed) out = pipe( prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=num_steps, generator=generator, guidance_scale=guidance_scale, adapter_conditioning_scale=adapter_conditioning_scale, adapter_conditioning_factor=adapter_conditioning_factor, ).images[0] return out with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION, elem_id="description") with gr.Row(): with gr.Column(): with gr.Group(): image = gr.Image( source="canvas", tool="sketch", type="pil", image_mode="L", invert_colors=True, shape=(1024, 1024), brush_radius=4, height=440, ) prompt = gr.Textbox(label="Prompt") style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) run_button = gr.Button("Run") with gr.Accordion("Advanced options", open=False): negative_prompt = gr.Textbox( label="Negative prompt", value=" extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured", ) num_steps = gr.Slider( label="Number of steps", minimum=1, maximum=50, step=1, value=25, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.1, maximum=10.0, step=0.1, value=5, ) adapter_conditioning_scale = gr.Slider( label="Adapter conditioning scale", minimum=0.5, maximum=1, step=0.1, value=0.8, ) adapter_conditioning_factor = gr.Slider( label="Adapter conditioning factor", info="Fraction of timesteps for which adapter should be applied", minimum=0.5, maximum=1, step=0.1, value=0.8, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Column(): result_image = gr.Image(label="Intermediate Image Output", height=400) result_video = gr.Video(label="Final Video Output", height=400) inputs = [ image, prompt, negative_prompt, style, num_steps, guidance_scale, adapter_conditioning_scale, adapter_conditioning_factor, seed, ] prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=inferImage, inputs=inputs, outputs=result_image, api_name=False, ).then( fn=inferVideo, inputs=[result_image], outputs=result_video, api_name=False, ) negative_prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=inferImage, inputs=inputs, outputs=result_image, api_name=False, ).then( fn=inferVideo, inputs=[result_image], outputs=result_video, api_name=False, ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=inferImage, inputs=inputs, outputs=result_image, api_name=False, ).then( fn=inferVideo, inputs=[result_image], outputs=result_video, api_name=False, ) if __name__ == "__main__": demo.queue(max_size=20).launch()