face-swap-docker / app /plugins /plugin_dmdnet.py
pknez's picture
Upload 921 files
ffa9e8f
raw
history blame
38.9 kB
from chain_img_processor import ChainImgProcessor, ChainImgPlugin
import os
from PIL import Image
from numpy import asarray
import torch
import torch.nn as nn
import torch.nn.functional as F
import scipy.io as sio
import numpy as np
import torch.nn.utils.spectral_norm as SpectralNorm
from torchvision.ops import roi_align
from math import sqrt
import os
import cv2
import os
from torchvision.transforms.functional import normalize
import copy
import threading
modname = os.path.basename(__file__)[:-3] # calculating modname
oDMDNet = None
device = None
THREAD_LOCK_DMDNET = threading.Lock()
# start function
def start(core:ChainImgProcessor):
manifest = { # plugin settings
"name": "DMDNet", # name
"version": "1.0", # version
"default_options": {},
"img_processor": {
"dmdnet": DMDNETPlugin
}
}
return manifest
def start_with_options(core:ChainImgProcessor, manifest:dict):
pass
class DMDNETPlugin(ChainImgPlugin):
# https://stackoverflow.com/a/67174339
def landmarks106_to_68(self, pt106):
map106to68=[1,10,12,14,16,3,5,7,0,23,21,19,32,30,28,26,17,
43,48,49,51,50,
102,103,104,105,101,
72,73,74,86,78,79,80,85,84,
35,41,42,39,37,36,
89,95,96,93,91,90,
52,64,63,71,67,68,61,58,59,53,56,55,65,66,62,70,69,57,60,54
]
pt68 = []
for i in range(68):
index = map106to68[i]
pt68.append(pt106[index])
return pt68
def init_plugin(self):
global create
if oDMDNet == None:
create(self.device)
def process(self, frame, params:dict):
if "face_detected" in params:
if not params["face_detected"]:
return frame
temp_frame = copy.copy(frame)
if "processed_faces" in params:
for face in params["processed_faces"]:
start_x, start_y, end_x, end_y = map(int, face['bbox'])
# padding_x = int((end_x - start_x) * 0.5)
# padding_y = int((end_y - start_y) * 0.5)
padding_x = 0
padding_y = 0
start_x = max(0, start_x - padding_x)
start_y = max(0, start_y - padding_y)
end_x = max(0, end_x + padding_x)
end_y = max(0, end_y + padding_y)
temp_face = temp_frame[start_y:end_y, start_x:end_x]
if temp_face.size:
temp_face = self.enhance_face(temp_face, face)
temp_face = cv2.resize(temp_face, (end_x - start_x,end_y - start_y), interpolation = cv2.INTER_LANCZOS4)
temp_frame[start_y:end_y, start_x:end_x] = temp_face
temp_frame = Image.blend(Image.fromarray(frame), Image.fromarray(temp_frame), params["blend_ratio"])
return asarray(temp_frame)
def enhance_face(self, clip, face):
global device
lm106 = face.landmark_2d_106
lq_landmarks = asarray(self.landmarks106_to_68(lm106))
lq = read_img_tensor(clip, False)
LQLocs = get_component_location(lq_landmarks)
# generic
SpMem256Para, SpMem128Para, SpMem64Para = None, None, None
with torch.no_grad():
with THREAD_LOCK_DMDNET:
try:
GenericResult, SpecificResult = oDMDNet(lq = lq.to(device), loc = LQLocs.unsqueeze(0), sp_256 = SpMem256Para, sp_128 = SpMem128Para, sp_64 = SpMem64Para)
except Exception as e:
print(f'Error {e} there may be something wrong with the detected component locations.')
return clip
save_generic = GenericResult * 0.5 + 0.5
save_generic = save_generic.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
save_generic = np.clip(save_generic.float().cpu().numpy(), 0, 1) * 255.0
check_lq = lq * 0.5 + 0.5
check_lq = check_lq.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
check_lq = np.clip(check_lq.float().cpu().numpy(), 0, 1) * 255.0
enhanced_img = np.hstack((check_lq, save_generic))
temp_frame = save_generic.astype("uint8")
# temp_frame = save_generic.astype("uint8")
return temp_frame
def create(devicename):
global device, oDMDNet
test = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(devicename)
oDMDNet = DMDNet().to(device)
weights = torch.load('./models/DMDNet.pth')
oDMDNet.load_state_dict(weights, strict=True)
oDMDNet.eval()
num_params = 0
for param in oDMDNet.parameters():
num_params += param.numel()
# print('{:>8s} : {}'.format('Using device', device))
# print('{:>8s} : {:.2f}M'.format('Model params', num_params/1e6))
def read_img_tensor(Img=None, return_landmark=True): #rgb -1~1
# Img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # BGR or G
if Img.ndim == 2:
Img = cv2.cvtColor(Img, cv2.COLOR_GRAY2RGB) # GGG
else:
Img = cv2.cvtColor(Img, cv2.COLOR_BGR2RGB) # RGB
if Img.shape[0] < 512 or Img.shape[1] < 512:
Img = cv2.resize(Img, (512,512), interpolation = cv2.INTER_AREA)
# ImgForLands = Img.copy()
Img = Img.transpose((2, 0, 1))/255.0
Img = torch.from_numpy(Img).float()
normalize(Img, [0.5,0.5,0.5], [0.5,0.5,0.5], inplace=True)
ImgTensor = Img.unsqueeze(0)
return ImgTensor
def get_component_location(Landmarks, re_read=False):
if re_read:
ReadLandmark = []
with open(Landmarks,'r') as f:
for line in f:
tmp = [float(i) for i in line.split(' ') if i != '\n']
ReadLandmark.append(tmp)
ReadLandmark = np.array(ReadLandmark) #
Landmarks = np.reshape(ReadLandmark, [-1, 2]) # 68*2
Map_LE_B = list(np.hstack((range(17,22), range(36,42))))
Map_RE_B = list(np.hstack((range(22,27), range(42,48))))
Map_LE = list(range(36,42))
Map_RE = list(range(42,48))
Map_NO = list(range(29,36))
Map_MO = list(range(48,68))
Landmarks[Landmarks>504]=504
Landmarks[Landmarks<8]=8
#left eye
Mean_LE = np.mean(Landmarks[Map_LE],0)
L_LE1 = Mean_LE[1] - np.min(Landmarks[Map_LE_B,1])
L_LE1 = L_LE1 * 1.3
L_LE2 = L_LE1 / 1.9
L_LE_xy = L_LE1 + L_LE2
L_LE_lt = [L_LE_xy/2, L_LE1]
L_LE_rb = [L_LE_xy/2, L_LE2]
Location_LE = np.hstack((Mean_LE - L_LE_lt + 1, Mean_LE + L_LE_rb)).astype(int)
#right eye
Mean_RE = np.mean(Landmarks[Map_RE],0)
L_RE1 = Mean_RE[1] - np.min(Landmarks[Map_RE_B,1])
L_RE1 = L_RE1 * 1.3
L_RE2 = L_RE1 / 1.9
L_RE_xy = L_RE1 + L_RE2
L_RE_lt = [L_RE_xy/2, L_RE1]
L_RE_rb = [L_RE_xy/2, L_RE2]
Location_RE = np.hstack((Mean_RE - L_RE_lt + 1, Mean_RE + L_RE_rb)).astype(int)
#nose
Mean_NO = np.mean(Landmarks[Map_NO],0)
L_NO1 =( np.max([Mean_NO[0] - Landmarks[31][0], Landmarks[35][0] - Mean_NO[0]])) * 1.25
L_NO2 = (Landmarks[33][1] - Mean_NO[1]) * 1.1
L_NO_xy = L_NO1 * 2
L_NO_lt = [L_NO_xy/2, L_NO_xy - L_NO2]
L_NO_rb = [L_NO_xy/2, L_NO2]
Location_NO = np.hstack((Mean_NO - L_NO_lt + 1, Mean_NO + L_NO_rb)).astype(int)
#mouth
Mean_MO = np.mean(Landmarks[Map_MO],0)
L_MO = np.max((np.max(np.max(Landmarks[Map_MO],0) - np.min(Landmarks[Map_MO],0))/2,16)) * 1.1
MO_O = Mean_MO - L_MO + 1
MO_T = Mean_MO + L_MO
MO_T[MO_T>510]=510
Location_MO = np.hstack((MO_O, MO_T)).astype(int)
return torch.cat([torch.FloatTensor(Location_LE).unsqueeze(0), torch.FloatTensor(Location_RE).unsqueeze(0), torch.FloatTensor(Location_NO).unsqueeze(0), torch.FloatTensor(Location_MO).unsqueeze(0)], dim=0)
def calc_mean_std_4D(feat, eps=1e-5):
# eps is a small value added to the variance to avoid divide-by-zero.
size = feat.size()
assert (len(size) == 4)
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization_4D(content_feat, style_feat): # content_feat is ref feature, style is degradate feature
size = content_feat.size()
style_mean, style_std = calc_mean_std_4D(style_feat)
content_mean, content_std = calc_mean_std_4D(content_feat)
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
def convU(in_channels, out_channels,conv_layer, norm_layer, kernel_size=3, stride=1,dilation=1, bias=True):
return nn.Sequential(
SpectralNorm(conv_layer(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)),
nn.LeakyReLU(0.2),
SpectralNorm(conv_layer(out_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)),
)
class MSDilateBlock(nn.Module):
def __init__(self, in_channels,conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, kernel_size=3, dilation=[1,1,1,1], bias=True):
super(MSDilateBlock, self).__init__()
self.conv1 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[0], bias=bias)
self.conv2 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[1], bias=bias)
self.conv3 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[2], bias=bias)
self.conv4 = convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[3], bias=bias)
self.convi = SpectralNorm(conv_layer(in_channels*4, in_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2, bias=bias))
def forward(self, x):
conv1 = self.conv1(x)
conv2 = self.conv2(x)
conv3 = self.conv3(x)
conv4 = self.conv4(x)
cat = torch.cat([conv1, conv2, conv3, conv4], 1)
out = self.convi(cat) + x
return out
class AdaptiveInstanceNorm(nn.Module):
def __init__(self, in_channel):
super().__init__()
self.norm = nn.InstanceNorm2d(in_channel)
def forward(self, input, style):
style_mean, style_std = calc_mean_std_4D(style)
out = self.norm(input)
size = input.size()
out = style_std.expand(size) * out + style_mean.expand(size)
return out
class NoiseInjection(nn.Module):
def __init__(self, channel):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1))
def forward(self, image, noise):
if noise is None:
b, c, h, w = image.shape
noise = image.new_empty(b, 1, h, w).normal_()
return image + self.weight * noise
class StyledUpBlock(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size=3, padding=1,upsample=False, noise_inject=False):
super().__init__()
self.noise_inject = noise_inject
if upsample:
self.conv1 = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
nn.LeakyReLU(0.2),
)
else:
self.conv1 = nn.Sequential(
SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
)
self.convup = nn.Sequential(
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
)
if self.noise_inject:
self.noise1 = NoiseInjection(out_channel)
self.lrelu1 = nn.LeakyReLU(0.2)
self.ScaleModel1 = nn.Sequential(
SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1))
)
self.ShiftModel1 = nn.Sequential(
SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)),
)
def forward(self, input, style):
out = self.conv1(input)
out = self.lrelu1(out)
Shift1 = self.ShiftModel1(style)
Scale1 = self.ScaleModel1(style)
out = out * Scale1 + Shift1
if self.noise_inject:
out = self.noise1(out, noise=None)
outup = self.convup(out)
return outup
####################################################################
###############Face Dictionary Generator
####################################################################
def AttentionBlock(in_channel):
return nn.Sequential(
SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)),
)
class DilateResBlock(nn.Module):
def __init__(self, dim, dilation=[5,3] ):
super(DilateResBlock, self).__init__()
self.Res = nn.Sequential(
SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[0], dilation[0])),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[1], dilation[1])),
)
def forward(self, x):
out = x + self.Res(x)
return out
class KeyValue(nn.Module):
def __init__(self, indim, keydim, valdim):
super(KeyValue, self).__init__()
self.Key = nn.Sequential(
SpectralNorm(nn.Conv2d(indim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(keydim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)),
)
self.Value = nn.Sequential(
SpectralNorm(nn.Conv2d(indim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(valdim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)),
)
def forward(self, x):
return self.Key(x), self.Value(x)
class MaskAttention(nn.Module):
def __init__(self, indim):
super(MaskAttention, self).__init__()
self.conv1 = nn.Sequential(
SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
)
self.conv2 = nn.Sequential(
SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
)
self.conv3 = nn.Sequential(
SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
)
self.convCat = nn.Sequential(
SpectralNorm(nn.Conv2d(indim//3 * 3, indim, kernel_size=(3,3), padding=(1,1), stride=1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(indim, indim, kernel_size=(3,3), padding=(1,1), stride=1)),
)
def forward(self, x, y, z):
c1 = self.conv1(x)
c2 = self.conv2(y)
c3 = self.conv3(z)
return self.convCat(torch.cat([c1,c2,c3], dim=1))
class Query(nn.Module):
def __init__(self, indim, quedim):
super(Query, self).__init__()
self.Query = nn.Sequential(
SpectralNorm(nn.Conv2d(indim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(quedim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)),
)
def forward(self, x):
return self.Query(x)
def roi_align_self(input, location, target_size):
return torch.cat([F.interpolate(input[i:i+1,:,location[i,1]:location[i,3],location[i,0]:location[i,2]],(target_size,target_size),mode='bilinear',align_corners=False) for i in range(input.size(0))],0)
class FeatureExtractor(nn.Module):
def __init__(self, ngf = 64, key_scale = 4):#
super().__init__()
self.key_scale = 4
self.part_sizes = np.array([80,80,50,110]) #
self.feature_sizes = np.array([256,128,64]) #
self.conv1 = nn.Sequential(
SpectralNorm(nn.Conv2d(3, ngf, 3, 2, 1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
)
self.conv2 = nn.Sequential(
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1))
)
self.res1 = DilateResBlock(ngf, [5,3])
self.res2 = DilateResBlock(ngf, [5,3])
self.conv3 = nn.Sequential(
SpectralNorm(nn.Conv2d(ngf, ngf*2, 3, 2, 1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)),
)
self.conv4 = nn.Sequential(
SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1))
)
self.res3 = DilateResBlock(ngf*2, [3,1])
self.res4 = DilateResBlock(ngf*2, [3,1])
self.conv5 = nn.Sequential(
SpectralNorm(nn.Conv2d(ngf*2, ngf*4, 3, 2, 1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)),
)
self.conv6 = nn.Sequential(
SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)),
nn.LeakyReLU(0.2),
SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1))
)
self.res5 = DilateResBlock(ngf*4, [1,1])
self.res6 = DilateResBlock(ngf*4, [1,1])
self.LE_256_Q = Query(ngf, ngf // self.key_scale)
self.RE_256_Q = Query(ngf, ngf // self.key_scale)
self.MO_256_Q = Query(ngf, ngf // self.key_scale)
self.LE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
self.RE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
self.MO_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
self.LE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)
self.RE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)
self.MO_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)
def forward(self, img, locs):
le_location = locs[:,0,:].int().cpu().numpy()
re_location = locs[:,1,:].int().cpu().numpy()
no_location = locs[:,2,:].int().cpu().numpy()
mo_location = locs[:,3,:].int().cpu().numpy()
f1_0 = self.conv1(img)
f1_1 = self.res1(f1_0)
f2_0 = self.conv2(f1_1)
f2_1 = self.res2(f2_0)
f3_0 = self.conv3(f2_1)
f3_1 = self.res3(f3_0)
f4_0 = self.conv4(f3_1)
f4_1 = self.res4(f4_0)
f5_0 = self.conv5(f4_1)
f5_1 = self.res5(f5_0)
f6_0 = self.conv6(f5_1)
f6_1 = self.res6(f6_0)
####ROI Align
le_part_256 = roi_align_self(f2_1.clone(), le_location//2, self.part_sizes[0]//2)
re_part_256 = roi_align_self(f2_1.clone(), re_location//2, self.part_sizes[1]//2)
mo_part_256 = roi_align_self(f2_1.clone(), mo_location//2, self.part_sizes[3]//2)
le_part_128 = roi_align_self(f4_1.clone(), le_location//4, self.part_sizes[0]//4)
re_part_128 = roi_align_self(f4_1.clone(), re_location//4, self.part_sizes[1]//4)
mo_part_128 = roi_align_self(f4_1.clone(), mo_location//4, self.part_sizes[3]//4)
le_part_64 = roi_align_self(f6_1.clone(), le_location//8, self.part_sizes[0]//8)
re_part_64 = roi_align_self(f6_1.clone(), re_location//8, self.part_sizes[1]//8)
mo_part_64 = roi_align_self(f6_1.clone(), mo_location//8, self.part_sizes[3]//8)
le_256_q = self.LE_256_Q(le_part_256)
re_256_q = self.RE_256_Q(re_part_256)
mo_256_q = self.MO_256_Q(mo_part_256)
le_128_q = self.LE_128_Q(le_part_128)
re_128_q = self.RE_128_Q(re_part_128)
mo_128_q = self.MO_128_Q(mo_part_128)
le_64_q = self.LE_64_Q(le_part_64)
re_64_q = self.RE_64_Q(re_part_64)
mo_64_q = self.MO_64_Q(mo_part_64)
return {'f256': f2_1, 'f128': f4_1, 'f64': f6_1,\
'le256': le_part_256, 're256': re_part_256, 'mo256': mo_part_256, \
'le128': le_part_128, 're128': re_part_128, 'mo128': mo_part_128, \
'le64': le_part_64, 're64': re_part_64, 'mo64': mo_part_64, \
'le_256_q': le_256_q, 're_256_q': re_256_q, 'mo_256_q': mo_256_q,\
'le_128_q': le_128_q, 're_128_q': re_128_q, 'mo_128_q': mo_128_q,\
'le_64_q': le_64_q, 're_64_q': re_64_q, 'mo_64_q': mo_64_q}
class DMDNet(nn.Module):
def __init__(self, ngf = 64, banks_num = 128):
super().__init__()
self.part_sizes = np.array([80,80,50,110]) # size for 512
self.feature_sizes = np.array([256,128,64]) # size for 512
self.banks_num = banks_num
self.key_scale = 4
self.E_lq = FeatureExtractor(key_scale = self.key_scale)
self.E_hq = FeatureExtractor(key_scale = self.key_scale)
self.LE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)
self.RE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)
self.MO_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)
self.LE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)
self.RE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)
self.MO_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)
self.LE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)
self.RE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)
self.MO_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)
self.LE_256_Attention = AttentionBlock(64)
self.RE_256_Attention = AttentionBlock(64)
self.MO_256_Attention = AttentionBlock(64)
self.LE_128_Attention = AttentionBlock(128)
self.RE_128_Attention = AttentionBlock(128)
self.MO_128_Attention = AttentionBlock(128)
self.LE_64_Attention = AttentionBlock(256)
self.RE_64_Attention = AttentionBlock(256)
self.MO_64_Attention = AttentionBlock(256)
self.LE_256_Mask = MaskAttention(64)
self.RE_256_Mask = MaskAttention(64)
self.MO_256_Mask = MaskAttention(64)
self.LE_128_Mask = MaskAttention(128)
self.RE_128_Mask = MaskAttention(128)
self.MO_128_Mask = MaskAttention(128)
self.LE_64_Mask = MaskAttention(256)
self.RE_64_Mask = MaskAttention(256)
self.MO_64_Mask = MaskAttention(256)
self.MSDilate = MSDilateBlock(ngf*4, dilation = [4,3,2,1])
self.up1 = StyledUpBlock(ngf*4, ngf*2, noise_inject=False) #
self.up2 = StyledUpBlock(ngf*2, ngf, noise_inject=False) #
self.up3 = StyledUpBlock(ngf, ngf, noise_inject=False) #
self.up4 = nn.Sequential(
SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
nn.LeakyReLU(0.2),
UpResBlock(ngf),
UpResBlock(ngf),
SpectralNorm(nn.Conv2d(ngf, 3, kernel_size=3, stride=1, padding=1)),
nn.Tanh()
)
# define generic memory, revise register_buffer to register_parameter for backward update
self.register_buffer('le_256_mem_key', torch.randn(128,16,40,40))
self.register_buffer('re_256_mem_key', torch.randn(128,16,40,40))
self.register_buffer('mo_256_mem_key', torch.randn(128,16,55,55))
self.register_buffer('le_256_mem_value', torch.randn(128,64,40,40))
self.register_buffer('re_256_mem_value', torch.randn(128,64,40,40))
self.register_buffer('mo_256_mem_value', torch.randn(128,64,55,55))
self.register_buffer('le_128_mem_key', torch.randn(128,32,20,20))
self.register_buffer('re_128_mem_key', torch.randn(128,32,20,20))
self.register_buffer('mo_128_mem_key', torch.randn(128,32,27,27))
self.register_buffer('le_128_mem_value', torch.randn(128,128,20,20))
self.register_buffer('re_128_mem_value', torch.randn(128,128,20,20))
self.register_buffer('mo_128_mem_value', torch.randn(128,128,27,27))
self.register_buffer('le_64_mem_key', torch.randn(128,64,10,10))
self.register_buffer('re_64_mem_key', torch.randn(128,64,10,10))
self.register_buffer('mo_64_mem_key', torch.randn(128,64,13,13))
self.register_buffer('le_64_mem_value', torch.randn(128,256,10,10))
self.register_buffer('re_64_mem_value', torch.randn(128,256,10,10))
self.register_buffer('mo_64_mem_value', torch.randn(128,256,13,13))
def readMem(self, k, v, q):
sim = F.conv2d(q, k)
score = F.softmax(sim/sqrt(sim.size(1)), dim=1) #B * S * 1 * 1 6*128
sb,sn,sw,sh = score.size()
s_m = score.view(sb, -1).unsqueeze(1)#2*1*M
vb,vn,vw,vh = v.size()
v_in = v.view(vb, -1).repeat(sb,1,1)#2*M*(c*w*h)
mem_out = torch.bmm(s_m, v_in).squeeze(1).view(sb, vn, vw,vh)
max_inds = torch.argmax(score, dim=1).squeeze()
return mem_out, max_inds
def memorize(self, img, locs):
fs = self.E_hq(img, locs)
LE256_key, LE256_value = self.LE_256_KV(fs['le256'])
RE256_key, RE256_value = self.RE_256_KV(fs['re256'])
MO256_key, MO256_value = self.MO_256_KV(fs['mo256'])
LE128_key, LE128_value = self.LE_128_KV(fs['le128'])
RE128_key, RE128_value = self.RE_128_KV(fs['re128'])
MO128_key, MO128_value = self.MO_128_KV(fs['mo128'])
LE64_key, LE64_value = self.LE_64_KV(fs['le64'])
RE64_key, RE64_value = self.RE_64_KV(fs['re64'])
MO64_key, MO64_value = self.MO_64_KV(fs['mo64'])
Mem256 = {'LE256Key': LE256_key, 'LE256Value': LE256_value, 'RE256Key': RE256_key, 'RE256Value': RE256_value,'MO256Key': MO256_key, 'MO256Value': MO256_value}
Mem128 = {'LE128Key': LE128_key, 'LE128Value': LE128_value, 'RE128Key': RE128_key, 'RE128Value': RE128_value,'MO128Key': MO128_key, 'MO128Value': MO128_value}
Mem64 = {'LE64Key': LE64_key, 'LE64Value': LE64_value, 'RE64Key': RE64_key, 'RE64Value': RE64_value,'MO64Key': MO64_key, 'MO64Value': MO64_value}
FS256 = {'LE256F':fs['le256'], 'RE256F':fs['re256'], 'MO256F':fs['mo256']}
FS128 = {'LE128F':fs['le128'], 'RE128F':fs['re128'], 'MO128F':fs['mo128']}
FS64 = {'LE64F':fs['le64'], 'RE64F':fs['re64'], 'MO64F':fs['mo64']}
return Mem256, Mem128, Mem64
def enhancer(self, fs_in, sp_256=None, sp_128=None, sp_64=None):
le_256_q = fs_in['le_256_q']
re_256_q = fs_in['re_256_q']
mo_256_q = fs_in['mo_256_q']
le_128_q = fs_in['le_128_q']
re_128_q = fs_in['re_128_q']
mo_128_q = fs_in['mo_128_q']
le_64_q = fs_in['le_64_q']
re_64_q = fs_in['re_64_q']
mo_64_q = fs_in['mo_64_q']
####for 256
le_256_mem_g, le_256_inds = self.readMem(self.le_256_mem_key, self.le_256_mem_value, le_256_q)
re_256_mem_g, re_256_inds = self.readMem(self.re_256_mem_key, self.re_256_mem_value, re_256_q)
mo_256_mem_g, mo_256_inds = self.readMem(self.mo_256_mem_key, self.mo_256_mem_value, mo_256_q)
le_128_mem_g, le_128_inds = self.readMem(self.le_128_mem_key, self.le_128_mem_value, le_128_q)
re_128_mem_g, re_128_inds = self.readMem(self.re_128_mem_key, self.re_128_mem_value, re_128_q)
mo_128_mem_g, mo_128_inds = self.readMem(self.mo_128_mem_key, self.mo_128_mem_value, mo_128_q)
le_64_mem_g, le_64_inds = self.readMem(self.le_64_mem_key, self.le_64_mem_value, le_64_q)
re_64_mem_g, re_64_inds = self.readMem(self.re_64_mem_key, self.re_64_mem_value, re_64_q)
mo_64_mem_g, mo_64_inds = self.readMem(self.mo_64_mem_key, self.mo_64_mem_value, mo_64_q)
if sp_256 is not None and sp_128 is not None and sp_64 is not None:
le_256_mem_s, _ = self.readMem(sp_256['LE256Key'], sp_256['LE256Value'], le_256_q)
re_256_mem_s, _ = self.readMem(sp_256['RE256Key'], sp_256['RE256Value'], re_256_q)
mo_256_mem_s, _ = self.readMem(sp_256['MO256Key'], sp_256['MO256Value'], mo_256_q)
le_256_mask = self.LE_256_Mask(fs_in['le256'],le_256_mem_s,le_256_mem_g)
le_256_mem = le_256_mask*le_256_mem_s + (1-le_256_mask)*le_256_mem_g
re_256_mask = self.RE_256_Mask(fs_in['re256'],re_256_mem_s,re_256_mem_g)
re_256_mem = re_256_mask*re_256_mem_s + (1-re_256_mask)*re_256_mem_g
mo_256_mask = self.MO_256_Mask(fs_in['mo256'],mo_256_mem_s,mo_256_mem_g)
mo_256_mem = mo_256_mask*mo_256_mem_s + (1-mo_256_mask)*mo_256_mem_g
le_128_mem_s, _ = self.readMem(sp_128['LE128Key'], sp_128['LE128Value'], le_128_q)
re_128_mem_s, _ = self.readMem(sp_128['RE128Key'], sp_128['RE128Value'], re_128_q)
mo_128_mem_s, _ = self.readMem(sp_128['MO128Key'], sp_128['MO128Value'], mo_128_q)
le_128_mask = self.LE_128_Mask(fs_in['le128'],le_128_mem_s,le_128_mem_g)
le_128_mem = le_128_mask*le_128_mem_s + (1-le_128_mask)*le_128_mem_g
re_128_mask = self.RE_128_Mask(fs_in['re128'],re_128_mem_s,re_128_mem_g)
re_128_mem = re_128_mask*re_128_mem_s + (1-re_128_mask)*re_128_mem_g
mo_128_mask = self.MO_128_Mask(fs_in['mo128'],mo_128_mem_s,mo_128_mem_g)
mo_128_mem = mo_128_mask*mo_128_mem_s + (1-mo_128_mask)*mo_128_mem_g
le_64_mem_s, _ = self.readMem(sp_64['LE64Key'], sp_64['LE64Value'], le_64_q)
re_64_mem_s, _ = self.readMem(sp_64['RE64Key'], sp_64['RE64Value'], re_64_q)
mo_64_mem_s, _ = self.readMem(sp_64['MO64Key'], sp_64['MO64Value'], mo_64_q)
le_64_mask = self.LE_64_Mask(fs_in['le64'],le_64_mem_s,le_64_mem_g)
le_64_mem = le_64_mask*le_64_mem_s + (1-le_64_mask)*le_64_mem_g
re_64_mask = self.RE_64_Mask(fs_in['re64'],re_64_mem_s,re_64_mem_g)
re_64_mem = re_64_mask*re_64_mem_s + (1-re_64_mask)*re_64_mem_g
mo_64_mask = self.MO_64_Mask(fs_in['mo64'],mo_64_mem_s,mo_64_mem_g)
mo_64_mem = mo_64_mask*mo_64_mem_s + (1-mo_64_mask)*mo_64_mem_g
else:
le_256_mem = le_256_mem_g
re_256_mem = re_256_mem_g
mo_256_mem = mo_256_mem_g
le_128_mem = le_128_mem_g
re_128_mem = re_128_mem_g
mo_128_mem = mo_128_mem_g
le_64_mem = le_64_mem_g
re_64_mem = re_64_mem_g
mo_64_mem = mo_64_mem_g
le_256_mem_norm = adaptive_instance_normalization_4D(le_256_mem, fs_in['le256'])
re_256_mem_norm = adaptive_instance_normalization_4D(re_256_mem, fs_in['re256'])
mo_256_mem_norm = adaptive_instance_normalization_4D(mo_256_mem, fs_in['mo256'])
####for 128
le_128_mem_norm = adaptive_instance_normalization_4D(le_128_mem, fs_in['le128'])
re_128_mem_norm = adaptive_instance_normalization_4D(re_128_mem, fs_in['re128'])
mo_128_mem_norm = adaptive_instance_normalization_4D(mo_128_mem, fs_in['mo128'])
####for 64
le_64_mem_norm = adaptive_instance_normalization_4D(le_64_mem, fs_in['le64'])
re_64_mem_norm = adaptive_instance_normalization_4D(re_64_mem, fs_in['re64'])
mo_64_mem_norm = adaptive_instance_normalization_4D(mo_64_mem, fs_in['mo64'])
EnMem256 = {'LE256Norm': le_256_mem_norm, 'RE256Norm': re_256_mem_norm, 'MO256Norm': mo_256_mem_norm}
EnMem128 = {'LE128Norm': le_128_mem_norm, 'RE128Norm': re_128_mem_norm, 'MO128Norm': mo_128_mem_norm}
EnMem64 = {'LE64Norm': le_64_mem_norm, 'RE64Norm': re_64_mem_norm, 'MO64Norm': mo_64_mem_norm}
Ind256 = {'LE': le_256_inds, 'RE': re_256_inds, 'MO': mo_256_inds}
Ind128 = {'LE': le_128_inds, 'RE': re_128_inds, 'MO': mo_128_inds}
Ind64 = {'LE': le_64_inds, 'RE': re_64_inds, 'MO': mo_64_inds}
return EnMem256, EnMem128, EnMem64, Ind256, Ind128, Ind64
def reconstruct(self, fs_in, locs, memstar):
le_256_mem_norm, re_256_mem_norm, mo_256_mem_norm = memstar[0]['LE256Norm'], memstar[0]['RE256Norm'], memstar[0]['MO256Norm']
le_128_mem_norm, re_128_mem_norm, mo_128_mem_norm = memstar[1]['LE128Norm'], memstar[1]['RE128Norm'], memstar[1]['MO128Norm']
le_64_mem_norm, re_64_mem_norm, mo_64_mem_norm = memstar[2]['LE64Norm'], memstar[2]['RE64Norm'], memstar[2]['MO64Norm']
le_256_final = self.LE_256_Attention(le_256_mem_norm - fs_in['le256']) * le_256_mem_norm + fs_in['le256']
re_256_final = self.RE_256_Attention(re_256_mem_norm - fs_in['re256']) * re_256_mem_norm + fs_in['re256']
mo_256_final = self.MO_256_Attention(mo_256_mem_norm - fs_in['mo256']) * mo_256_mem_norm + fs_in['mo256']
le_128_final = self.LE_128_Attention(le_128_mem_norm - fs_in['le128']) * le_128_mem_norm + fs_in['le128']
re_128_final = self.RE_128_Attention(re_128_mem_norm - fs_in['re128']) * re_128_mem_norm + fs_in['re128']
mo_128_final = self.MO_128_Attention(mo_128_mem_norm - fs_in['mo128']) * mo_128_mem_norm + fs_in['mo128']
le_64_final = self.LE_64_Attention(le_64_mem_norm - fs_in['le64']) * le_64_mem_norm + fs_in['le64']
re_64_final = self.RE_64_Attention(re_64_mem_norm - fs_in['re64']) * re_64_mem_norm + fs_in['re64']
mo_64_final = self.MO_64_Attention(mo_64_mem_norm - fs_in['mo64']) * mo_64_mem_norm + fs_in['mo64']
le_location = locs[:,0,:]
re_location = locs[:,1,:]
mo_location = locs[:,3,:]
le_location = le_location.cpu().int().numpy()
re_location = re_location.cpu().int().numpy()
mo_location = mo_location.cpu().int().numpy()
up_in_256 = fs_in['f256'].clone()# * 0
up_in_128 = fs_in['f128'].clone()# * 0
up_in_64 = fs_in['f64'].clone()# * 0
for i in range(fs_in['f256'].size(0)):
up_in_256[i:i+1,:,le_location[i,1]//2:le_location[i,3]//2,le_location[i,0]//2:le_location[i,2]//2] = F.interpolate(le_256_final[i:i+1,:,:,:].clone(), (le_location[i,3]//2-le_location[i,1]//2,le_location[i,2]//2-le_location[i,0]//2),mode='bilinear',align_corners=False)
up_in_256[i:i+1,:,re_location[i,1]//2:re_location[i,3]//2,re_location[i,0]//2:re_location[i,2]//2] = F.interpolate(re_256_final[i:i+1,:,:,:].clone(), (re_location[i,3]//2-re_location[i,1]//2,re_location[i,2]//2-re_location[i,0]//2),mode='bilinear',align_corners=False)
up_in_256[i:i+1,:,mo_location[i,1]//2:mo_location[i,3]//2,mo_location[i,0]//2:mo_location[i,2]//2] = F.interpolate(mo_256_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//2-mo_location[i,1]//2,mo_location[i,2]//2-mo_location[i,0]//2),mode='bilinear',align_corners=False)
up_in_128[i:i+1,:,le_location[i,1]//4:le_location[i,3]//4,le_location[i,0]//4:le_location[i,2]//4] = F.interpolate(le_128_final[i:i+1,:,:,:].clone(), (le_location[i,3]//4-le_location[i,1]//4,le_location[i,2]//4-le_location[i,0]//4),mode='bilinear',align_corners=False)
up_in_128[i:i+1,:,re_location[i,1]//4:re_location[i,3]//4,re_location[i,0]//4:re_location[i,2]//4] = F.interpolate(re_128_final[i:i+1,:,:,:].clone(), (re_location[i,3]//4-re_location[i,1]//4,re_location[i,2]//4-re_location[i,0]//4),mode='bilinear',align_corners=False)
up_in_128[i:i+1,:,mo_location[i,1]//4:mo_location[i,3]//4,mo_location[i,0]//4:mo_location[i,2]//4] = F.interpolate(mo_128_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//4-mo_location[i,1]//4,mo_location[i,2]//4-mo_location[i,0]//4),mode='bilinear',align_corners=False)
up_in_64[i:i+1,:,le_location[i,1]//8:le_location[i,3]//8,le_location[i,0]//8:le_location[i,2]//8] = F.interpolate(le_64_final[i:i+1,:,:,:].clone(), (le_location[i,3]//8-le_location[i,1]//8,le_location[i,2]//8-le_location[i,0]//8),mode='bilinear',align_corners=False)
up_in_64[i:i+1,:,re_location[i,1]//8:re_location[i,3]//8,re_location[i,0]//8:re_location[i,2]//8] = F.interpolate(re_64_final[i:i+1,:,:,:].clone(), (re_location[i,3]//8-re_location[i,1]//8,re_location[i,2]//8-re_location[i,0]//8),mode='bilinear',align_corners=False)
up_in_64[i:i+1,:,mo_location[i,1]//8:mo_location[i,3]//8,mo_location[i,0]//8:mo_location[i,2]//8] = F.interpolate(mo_64_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//8-mo_location[i,1]//8,mo_location[i,2]//8-mo_location[i,0]//8),mode='bilinear',align_corners=False)
ms_in_64 = self.MSDilate(fs_in['f64'].clone())
fea_up1 = self.up1(ms_in_64, up_in_64)
fea_up2 = self.up2(fea_up1, up_in_128) #
fea_up3 = self.up3(fea_up2, up_in_256) #
output = self.up4(fea_up3) #
return output
def generate_specific_dictionary(self, sp_imgs=None, sp_locs=None):
return self.memorize(sp_imgs, sp_locs)
def forward(self, lq=None, loc=None, sp_256 = None, sp_128 = None, sp_64 = None):
fs_in = self.E_lq(lq, loc) # low quality images
GeMemNorm256, GeMemNorm128, GeMemNorm64, Ind256, Ind128, Ind64 = self.enhancer(fs_in)
GeOut = self.reconstruct(fs_in, loc, memstar = [GeMemNorm256, GeMemNorm128, GeMemNorm64])
if sp_256 is not None and sp_128 is not None and sp_64 is not None:
GSMemNorm256, GSMemNorm128, GSMemNorm64, _, _, _ = self.enhancer(fs_in, sp_256, sp_128, sp_64)
GSOut = self.reconstruct(fs_in, loc, memstar = [GSMemNorm256, GSMemNorm128, GSMemNorm64])
else:
GSOut = None
return GeOut, GSOut
class UpResBlock(nn.Module):
def __init__(self, dim, conv_layer = nn.Conv2d, norm_layer = nn.BatchNorm2d):
super(UpResBlock, self).__init__()
self.Model = nn.Sequential(
SpectralNorm(conv_layer(dim, dim, 3, 1, 1)),
nn.LeakyReLU(0.2),
SpectralNorm(conv_layer(dim, dim, 3, 1, 1)),
)
def forward(self, x):
out = x + self.Model(x)
return out