Spaces:
Runtime error
Runtime error
import math | |
from os.path import basename, dirname, join, isfile | |
import torch | |
from torch import nn | |
from torch.nn import functional as nnf | |
from torch.nn.modules.activation import ReLU | |
def get_prompt_list(prompt): | |
if prompt == 'plain': | |
return ['{}'] | |
elif prompt == 'fixed': | |
return ['a photo of a {}.'] | |
elif prompt == 'shuffle': | |
return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.'] | |
elif prompt == 'shuffle+': | |
return ['a photo of a {}.', 'a photograph of a {}.', 'an image of a {}.', '{}.', | |
'a cropped photo of a {}.', 'a good photo of a {}.', 'a photo of one {}.', | |
'a bad photo of a {}.', 'a photo of the {}.'] | |
else: | |
raise ValueError('Invalid value for prompt') | |
def forward_multihead_attention(x, b, with_aff=False, attn_mask=None): | |
""" | |
Simplified version of multihead attention (taken from torch source code but without tons of if clauses). | |
The mlp and layer norm come from CLIP. | |
x: input. | |
b: multihead attention module. | |
""" | |
x_ = b.ln_1(x) | |
q, k, v = nnf.linear(x_, b.attn.in_proj_weight, b.attn.in_proj_bias).chunk(3, dim=-1) | |
tgt_len, bsz, embed_dim = q.size() | |
head_dim = embed_dim // b.attn.num_heads | |
scaling = float(head_dim) ** -0.5 | |
q = q.contiguous().view(tgt_len, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1) | |
k = k.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1) | |
v = v.contiguous().view(-1, bsz * b.attn.num_heads, b.attn.head_dim).transpose(0, 1) | |
q = q * scaling | |
attn_output_weights = torch.bmm(q, k.transpose(1, 2)) # n_heads * batch_size, tokens^2, tokens^2 | |
if attn_mask is not None: | |
attn_mask_type, attn_mask = attn_mask | |
n_heads = attn_output_weights.size(0) // attn_mask.size(0) | |
attn_mask = attn_mask.repeat(n_heads, 1) | |
if attn_mask_type == 'cls_token': | |
# the mask only affects similarities compared to the readout-token. | |
attn_output_weights[:, 0, 1:] = attn_output_weights[:, 0, 1:] * attn_mask[None,...] | |
# attn_output_weights[:, 0, 0] = 0*attn_output_weights[:, 0, 0] | |
if attn_mask_type == 'all': | |
# print(attn_output_weights.shape, attn_mask[:, None].shape) | |
attn_output_weights[:, 1:, 1:] = attn_output_weights[:, 1:, 1:] * attn_mask[:, None] | |
attn_output_weights = torch.softmax(attn_output_weights, dim=-1) | |
attn_output = torch.bmm(attn_output_weights, v) | |
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) | |
attn_output = b.attn.out_proj(attn_output) | |
x = x + attn_output | |
x = x + b.mlp(b.ln_2(x)) | |
if with_aff: | |
return x, attn_output_weights | |
else: | |
return x | |
class CLIPDenseBase(nn.Module): | |
def __init__(self, version, reduce_cond, reduce_dim, prompt, n_tokens): | |
super().__init__() | |
import clip | |
# prec = torch.FloatTensor | |
self.clip_model, _ = clip.load(version, device='cpu', jit=False) | |
self.model = self.clip_model.visual | |
# if not None, scale conv weights such that we obtain n_tokens. | |
self.n_tokens = n_tokens | |
for p in self.clip_model.parameters(): | |
p.requires_grad_(False) | |
# conditional | |
if reduce_cond is not None: | |
self.reduce_cond = nn.Linear(512, reduce_cond) | |
for p in self.reduce_cond.parameters(): | |
p.requires_grad_(False) | |
else: | |
self.reduce_cond = None | |
self.film_mul = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim) | |
self.film_add = nn.Linear(512 if reduce_cond is None else reduce_cond, reduce_dim) | |
self.reduce = nn.Linear(768, reduce_dim) | |
self.prompt_list = get_prompt_list(prompt) | |
# precomputed prompts | |
import pickle | |
if isfile('precomputed_prompt_vectors.pickle'): | |
precomp = pickle.load(open('precomputed_prompt_vectors.pickle', 'rb')) | |
self.precomputed_prompts = {k: torch.from_numpy(v) for k, v in precomp.items()} | |
else: | |
self.precomputed_prompts = dict() | |
def rescaled_pos_emb(self, new_size): | |
assert len(new_size) == 2 | |
a = self.model.positional_embedding[1:].T.view(1, 768, *self.token_shape) | |
b = nnf.interpolate(a, new_size, mode='bicubic', align_corners=False).squeeze(0).view(768, new_size[0]*new_size[1]).T | |
return torch.cat([self.model.positional_embedding[:1], b]) | |
def visual_forward(self, x_inp, extract_layers=(), skip=False, mask=None): | |
with torch.no_grad(): | |
inp_size = x_inp.shape[2:] | |
if self.n_tokens is not None: | |
stride2 = x_inp.shape[2] // self.n_tokens | |
conv_weight2 = nnf.interpolate(self.model.conv1.weight, (stride2, stride2), mode='bilinear', align_corners=True) | |
x = nnf.conv2d(x_inp, conv_weight2, bias=self.model.conv1.bias, stride=stride2, dilation=self.model.conv1.dilation) | |
else: | |
x = self.model.conv1(x_inp) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
x = torch.cat([self.model.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] | |
standard_n_tokens = 50 if self.model.conv1.kernel_size[0] == 32 else 197 | |
if x.shape[1] != standard_n_tokens: | |
new_shape = int(math.sqrt(x.shape[1]-1)) | |
x = x + self.rescaled_pos_emb((new_shape, new_shape)).to(x.dtype)[None,:,:] | |
else: | |
x = x + self.model.positional_embedding.to(x.dtype) | |
x = self.model.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
activations, affinities = [], [] | |
for i, res_block in enumerate(self.model.transformer.resblocks): | |
if mask is not None: | |
mask_layer, mask_type, mask_tensor = mask | |
if mask_layer == i or mask_layer == 'all': | |
# import ipdb; ipdb.set_trace() | |
size = int(math.sqrt(x.shape[0] - 1)) | |
attn_mask = (mask_type, nnf.interpolate(mask_tensor.unsqueeze(1).float(), (size, size)).view(mask_tensor.shape[0], size * size)) | |
else: | |
attn_mask = None | |
else: | |
attn_mask = None | |
x, aff_per_head = forward_multihead_attention(x, res_block, with_aff=True, attn_mask=attn_mask) | |
if i in extract_layers: | |
affinities += [aff_per_head] | |
#if self.n_tokens is not None: | |
# activations += [nnf.interpolate(x, inp_size, mode='bilinear', align_corners=True)] | |
#else: | |
activations += [x] | |
if len(extract_layers) > 0 and i == max(extract_layers) and skip: | |
print('early skip') | |
break | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.model.ln_post(x[:, 0, :]) | |
if self.model.proj is not None: | |
x = x @ self.model.proj | |
return x, activations, affinities | |
def sample_prompts(self, words, prompt_list=None): | |
prompt_list = prompt_list if prompt_list is not None else self.prompt_list | |
prompt_indices = torch.multinomial(torch.ones(len(prompt_list)), len(words), replacement=True) | |
prompts = [prompt_list[i] for i in prompt_indices] | |
return [promt.format(w) for promt, w in zip(prompts, words)] | |
def get_cond_vec(self, conditional, batch_size): | |
# compute conditional from a single string | |
if conditional is not None and type(conditional) == str: | |
cond = self.compute_conditional(conditional) | |
cond = cond.repeat(batch_size, 1) | |
# compute conditional from string list/tuple | |
elif conditional is not None and type(conditional) in {list, tuple} and type(conditional[0]) == str: | |
assert len(conditional) == batch_size | |
cond = self.compute_conditional(conditional) | |
# use conditional directly | |
elif conditional is not None and type(conditional) == torch.Tensor and conditional.ndim == 2: | |
cond = conditional | |
# compute conditional from image | |
elif conditional is not None and type(conditional) == torch.Tensor: | |
with torch.no_grad(): | |
cond, _, _ = self.visual_forward(conditional) | |
else: | |
raise ValueError('invalid conditional') | |
return cond | |
def compute_conditional(self, conditional): | |
import clip | |
dev = next(self.parameters()).device | |
if type(conditional) in {list, tuple}: | |
text_tokens = clip.tokenize(conditional).to(dev) | |
cond = self.clip_model.encode_text(text_tokens) | |
else: | |
if conditional in self.precomputed_prompts: | |
cond = self.precomputed_prompts[conditional].float().to(dev) | |
else: | |
text_tokens = clip.tokenize([conditional]).to(dev) | |
cond = self.clip_model.encode_text(text_tokens)[0] | |
if self.shift_vector is not None: | |
return cond + self.shift_vector | |
else: | |
return cond | |
def clip_load_untrained(version): | |
assert version == 'ViT-B/16' | |
from clip.model import CLIP | |
from clip.clip import _MODELS, _download | |
model = torch.jit.load(_download(_MODELS['ViT-B/16'])).eval() | |
state_dict = model.state_dict() | |
vision_width = state_dict["visual.conv1.weight"].shape[0] | |
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) | |
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] | |
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) | |
image_resolution = vision_patch_size * grid_size | |
embed_dim = state_dict["text_projection"].shape[1] | |
context_length = state_dict["positional_embedding"].shape[0] | |
vocab_size = state_dict["token_embedding.weight"].shape[0] | |
transformer_width = state_dict["ln_final.weight"].shape[0] | |
transformer_heads = transformer_width // 64 | |
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) | |
return CLIP(embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, | |
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers) | |
class CLIPDensePredT(CLIPDenseBase): | |
def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, prompt='fixed', | |
extra_blocks=0, reduce_cond=None, fix_shift=False, | |
learn_trans_conv_only=False, limit_to_clip_only=False, upsample=False, | |
add_calibration=False, rev_activations=False, trans_conv=None, n_tokens=None, complex_trans_conv=False): | |
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens) | |
# device = 'cpu' | |
self.extract_layers = extract_layers | |
self.cond_layer = cond_layer | |
self.limit_to_clip_only = limit_to_clip_only | |
self.process_cond = None | |
self.rev_activations = rev_activations | |
depth = len(extract_layers) | |
if add_calibration: | |
self.calibration_conds = 1 | |
self.upsample_proj = nn.Conv2d(reduce_dim, 1, kernel_size=1) if upsample else None | |
self.add_activation1 = True | |
self.version = version | |
self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version] | |
if fix_shift: | |
# self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'clip_text_shift_vector.pth')), requires_grad=False) | |
self.shift_vector = nn.Parameter(torch.load(join(dirname(basename(__file__)), 'shift_text_to_vis.pth')), requires_grad=False) | |
# self.shift_vector = nn.Parameter(-1*torch.load(join(dirname(basename(__file__)), 'shift2.pth')), requires_grad=False) | |
else: | |
self.shift_vector = None | |
if trans_conv is None: | |
trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version] | |
else: | |
# explicitly define transposed conv kernel size | |
trans_conv_ks = (trans_conv, trans_conv) | |
if not complex_trans_conv: | |
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks) | |
else: | |
assert trans_conv_ks[0] == trans_conv_ks[1] | |
tp_kernels = (trans_conv_ks[0] // 4, trans_conv_ks[0] // 4) | |
self.trans_conv = nn.Sequential( | |
nn.Conv2d(reduce_dim, reduce_dim, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.ConvTranspose2d(reduce_dim, reduce_dim // 2, kernel_size=tp_kernels[0], stride=tp_kernels[0]), | |
nn.ReLU(), | |
nn.ConvTranspose2d(reduce_dim // 2, 1, kernel_size=tp_kernels[1], stride=tp_kernels[1]), | |
) | |
# self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks) | |
assert len(self.extract_layers) == depth | |
self.reduces = nn.ModuleList([nn.Linear(768, reduce_dim) for _ in range(depth)]) | |
self.blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(len(self.extract_layers))]) | |
self.extra_blocks = nn.ModuleList([nn.TransformerEncoderLayer(d_model=reduce_dim, nhead=n_heads) for _ in range(extra_blocks)]) | |
# refinement and trans conv | |
if learn_trans_conv_only: | |
for p in self.parameters(): | |
p.requires_grad_(False) | |
for p in self.trans_conv.parameters(): | |
p.requires_grad_(True) | |
self.prompt_list = get_prompt_list(prompt) | |
def forward(self, inp_image, conditional=None, return_features=False, mask=None): | |
assert type(return_features) == bool | |
inp_image = inp_image.to(self.model.positional_embedding.device) | |
if mask is not None: | |
raise ValueError('mask not supported') | |
# x_inp = normalize(inp_image) | |
x_inp = inp_image | |
bs, dev = inp_image.shape[0], x_inp.device | |
cond = self.get_cond_vec(conditional, bs) | |
visual_q, activations, _ = self.visual_forward(x_inp, extract_layers=[0] + list(self.extract_layers)) | |
activation1 = activations[0] | |
activations = activations[1:] | |
_activations = activations[::-1] if not self.rev_activations else activations | |
a = None | |
for i, (activation, block, reduce) in enumerate(zip(_activations, self.blocks, self.reduces)): | |
if a is not None: | |
a = reduce(activation) + a | |
else: | |
a = reduce(activation) | |
if i == self.cond_layer: | |
if self.reduce_cond is not None: | |
cond = self.reduce_cond(cond) | |
a = self.film_mul(cond) * a + self.film_add(cond) | |
a = block(a) | |
for block in self.extra_blocks: | |
a = a + block(a) | |
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens | |
size = int(math.sqrt(a.shape[2])) | |
a = a.view(bs, a.shape[1], size, size) | |
a = self.trans_conv(a) | |
if self.n_tokens is not None: | |
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear', align_corners=True) | |
if self.upsample_proj is not None: | |
a = self.upsample_proj(a) | |
a = nnf.interpolate(a, x_inp.shape[2:], mode='bilinear') | |
if return_features: | |
return a, visual_q, cond, [activation1] + activations | |
else: | |
return a, | |
class CLIPDensePredTMasked(CLIPDensePredT): | |
def __init__(self, version='ViT-B/32', extract_layers=(3, 6, 9), cond_layer=0, reduce_dim=128, n_heads=4, | |
prompt='fixed', extra_blocks=0, reduce_cond=None, fix_shift=False, learn_trans_conv_only=False, | |
refine=None, limit_to_clip_only=False, upsample=False, add_calibration=False, n_tokens=None): | |
super().__init__(version=version, extract_layers=extract_layers, cond_layer=cond_layer, reduce_dim=reduce_dim, | |
n_heads=n_heads, prompt=prompt, extra_blocks=extra_blocks, reduce_cond=reduce_cond, | |
fix_shift=fix_shift, learn_trans_conv_only=learn_trans_conv_only, | |
limit_to_clip_only=limit_to_clip_only, upsample=upsample, add_calibration=add_calibration, | |
n_tokens=n_tokens) | |
def visual_forward_masked(self, img_s, seg_s): | |
return super().visual_forward(img_s, mask=('all', 'cls_token', seg_s)) | |
def forward(self, img_q, cond_or_img_s, seg_s=None, return_features=False): | |
if seg_s is None: | |
cond = cond_or_img_s | |
else: | |
img_s = cond_or_img_s | |
with torch.no_grad(): | |
cond, _, _ = self.visual_forward_masked(img_s, seg_s) | |
return super().forward(img_q, cond, return_features=return_features) | |
class CLIPDenseBaseline(CLIPDenseBase): | |
def __init__(self, version='ViT-B/32', cond_layer=0, | |
extract_layer=9, reduce_dim=128, reduce2_dim=None, prompt='fixed', | |
reduce_cond=None, limit_to_clip_only=False, n_tokens=None): | |
super().__init__(version, reduce_cond, reduce_dim, prompt, n_tokens) | |
device = 'cpu' | |
# self.cond_layer = cond_layer | |
self.extract_layer = extract_layer | |
self.limit_to_clip_only = limit_to_clip_only | |
self.shift_vector = None | |
self.token_shape = {'ViT-B/32': (7, 7), 'ViT-B/16': (14, 14)}[version] | |
assert reduce2_dim is not None | |
self.reduce2 = nn.Sequential( | |
nn.Linear(reduce_dim, reduce2_dim), | |
nn.ReLU(), | |
nn.Linear(reduce2_dim, reduce_dim) | |
) | |
trans_conv_ks = {'ViT-B/32': (32, 32), 'ViT-B/16': (16, 16)}[version] | |
self.trans_conv = nn.ConvTranspose2d(reduce_dim, 1, trans_conv_ks, stride=trans_conv_ks) | |
def forward(self, inp_image, conditional=None, return_features=False): | |
inp_image = inp_image.to(self.model.positional_embedding.device) | |
# x_inp = normalize(inp_image) | |
x_inp = inp_image | |
bs, dev = inp_image.shape[0], x_inp.device | |
cond = self.get_cond_vec(conditional, bs) | |
visual_q, activations, affinities = self.visual_forward(x_inp, extract_layers=[self.extract_layer]) | |
a = activations[0] | |
a = self.reduce(a) | |
a = self.film_mul(cond) * a + self.film_add(cond) | |
if self.reduce2 is not None: | |
a = self.reduce2(a) | |
# the original model would execute a transformer block here | |
a = a[1:].permute(1, 2, 0) # rm cls token and -> BS, Feats, Tokens | |
size = int(math.sqrt(a.shape[2])) | |
a = a.view(bs, a.shape[1], size, size) | |
a = self.trans_conv(a) | |
if return_features: | |
return a, visual_q, cond, activations | |
else: | |
return a, | |
class CLIPSegMultiLabel(nn.Module): | |
def __init__(self, model) -> None: | |
super().__init__() | |
from third_party.JoEm.data_loader import get_seen_idx, get_unseen_idx, VOC | |
self.pascal_classes = VOC | |
from clip.clipseg import CLIPDensePredT | |
from general_utils import load_model | |
# self.clipseg = load_model('rd64-vit16-neg0.2-phrasecut', strict=False) | |
self.clipseg = load_model(model, strict=False) | |
self.clipseg.eval() | |
def forward(self, x): | |
bs = x.shape[0] | |
out = torch.ones(21, bs, 352, 352).to(x.device) * -10 | |
for class_id, class_name in enumerate(self.pascal_classes): | |
fac = 3 if class_name == 'background' else 1 | |
with torch.no_grad(): | |
pred = torch.sigmoid(self.clipseg(x, class_name)[0][:,0]) * fac | |
out[class_id] += pred | |
out = out.permute(1, 0, 2, 3) | |
return out | |
# construct output tensor | |