Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,39 @@
|
|
1 |
-
from
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def main():
|
6 |
-
description = "Querying a
|
7 |
-
"will produce the result. Finetuned TAPEX model runs on max 5000 rows and 20 columns data. " \
|
8 |
-
"A sample data of shopify store sales is provided"
|
9 |
|
10 |
-
article = "<p style='text-align: center'><a href='https://unscrambl.com/' target='_blank'>Unscrambl</a> | <a href='https://huggingface.co/
|
11 |
|
12 |
iface = gr.Interface(fn=execute_query,
|
13 |
inputs=[gr.Textbox(label="Search query"),
|
@@ -22,6 +48,5 @@ def main():
|
|
22 |
# iface.launch(server_name="0.0.0.0", server_port=7000)
|
23 |
iface.launch(enable_queue=True)
|
24 |
|
25 |
-
|
26 |
if __name__ == "__main__":
|
27 |
-
main()
|
|
|
1 |
+
from transformers import TapexTokenizer, BartForConditionalGeneration
|
2 |
+
import pandas as pd
|
3 |
+
import datetime
|
4 |
+
import torch
|
5 |
import gradio as gr
|
6 |
|
7 |
+
def execute_query(query, csv_file):
|
8 |
+
a = datetime.datetime.now()
|
9 |
+
|
10 |
+
table = pd.read_csv(csv_file.name, delimiter=",")
|
11 |
+
table = table.astype(str)
|
12 |
+
|
13 |
+
model_name = "microsoft/tapex-large-finetuned-wtq"
|
14 |
+
model = BartForConditionalGeneration.from_pretrained(model_name)
|
15 |
+
tokenizer = TapexTokenizer.from_pretrained(model_name)
|
16 |
+
|
17 |
+
queries = [query]
|
18 |
+
|
19 |
+
encoding = tokenizer(table=table, query=queries, padding=True, return_tensors="pt", truncation=True)
|
20 |
+
outputs = model.generate(**encoding)
|
21 |
+
ans = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
22 |
+
|
23 |
+
query_result = {
|
24 |
+
"query": query,
|
25 |
+
"answer": ans[0]
|
26 |
+
}
|
27 |
+
|
28 |
+
b = datetime.datetime.now()
|
29 |
+
print(b - a)
|
30 |
+
|
31 |
+
return query_result, table
|
32 |
|
33 |
def main():
|
34 |
+
description = "Querying a CSV using the TAPEX model. You can ask a question about tabular data, and the TAPEX model will produce the result. The finetuned TAPEX model runs on data with a maximum of 5000 rows and 20 columns. A sample dataset of Shopify store sales is provided."
|
|
|
|
|
35 |
|
36 |
+
article = "<p style='text-align: center'><a href='https://unscrambl.com/' target='_blank'>Unscrambl</a> | <a href='https://huggingface.co/microsoft/tapex-large-finetuned-wtq' target='_blank'>TAPEX Model</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=abaranovskij_tablequery' alt='visitor badge'></center>"
|
37 |
|
38 |
iface = gr.Interface(fn=execute_query,
|
39 |
inputs=[gr.Textbox(label="Search query"),
|
|
|
48 |
# iface.launch(server_name="0.0.0.0", server_port=7000)
|
49 |
iface.launch(enable_queue=True)
|
50 |
|
|
|
51 |
if __name__ == "__main__":
|
52 |
+
main()
|