187Matt commited on
Commit
e84dc4b
1 Parent(s): ec7419c

Upload 8 files

Browse files
README.md CHANGED
@@ -1,19 +1,91 @@
1
  ---
2
- title: AutoTrain Advanced
3
- emoji: 🚀
4
- colorFrom: blue
5
- colorTo: green
6
- sdk: docker
7
- pinned: false
8
- hf_oauth: true
9
- hf_oauth_expiration_minutes: 36000
10
- hf_oauth_scopes:
11
- - read-repos
12
- - write-repos
13
- - manage-repos
14
- - inference-api
15
- - read-billing
16
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ---
18
 
19
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - conll2003
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: dark-bert-finetuned-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: conll2003
20
+ type: conll2003
21
+ config: conll2003
22
+ split: train
23
+ args: conll2003
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.928300642821823
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9478290138000673
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9379631942709634
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9859009831047272
37
  ---
38
 
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # dark-bert-finetuned-ner
43
+
44
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.0639
47
+ - Precision: 0.9283
48
+ - Recall: 0.9478
49
+ - F1: 0.9380
50
+ - Accuracy: 0.9859
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 3
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0881 | 1.0 | 1756 | 0.0716 | 0.9172 | 0.9322 | 0.9246 | 0.9817 |
82
+ | 0.0375 | 2.0 | 3512 | 0.0610 | 0.9275 | 0.9455 | 0.9364 | 0.9857 |
83
+ | 0.0207 | 3.0 | 5268 | 0.0639 | 0.9283 | 0.9478 | 0.9380 | 0.9859 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.22.1
89
+ - Pytorch 1.10.0
90
+ - Datasets 2.5.1
91
+ - Tokenizers 0.12.1
config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-cased",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "O",
14
+ "1": "B-PER",
15
+ "2": "I-PER",
16
+ "3": "B-ORG",
17
+ "4": "I-ORG",
18
+ "5": "B-LOC",
19
+ "6": "I-LOC",
20
+ "7": "B-MISC",
21
+ "8": "I-MISC"
22
+ },
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 3072,
25
+ "label2id": {
26
+ "B-LOC": "5",
27
+ "B-MISC": "7",
28
+ "B-ORG": "3",
29
+ "B-PER": "1",
30
+ "I-LOC": "6",
31
+ "I-MISC": "8",
32
+ "I-ORG": "4",
33
+ "I-PER": "2",
34
+ "O": "0"
35
+ },
36
+ "layer_norm_eps": 1e-12,
37
+ "max_position_embeddings": 512,
38
+ "model_type": "bert",
39
+ "num_attention_heads": 12,
40
+ "num_hidden_layers": 12,
41
+ "pad_token_id": 0,
42
+ "position_embedding_type": "absolute",
43
+ "torch_dtype": "float32",
44
+ "transformers_version": "4.22.1",
45
+ "type_vocab_size": 2,
46
+ "use_cache": true,
47
+ "vocab_size": 28996
48
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f81344e728f5a18bf527fc1c141e71c6554ae790d2c2fc5e068fee0713ac1e19
3
+ size 134
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_lower_case": false,
4
+ "mask_token": "[MASK]",
5
+ "model_max_length": 512,
6
+ "name_or_path": "bert-base-cased",
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "special_tokens_map_file": null,
10
+ "strip_accents": null,
11
+ "tokenize_chinese_chars": true,
12
+ "tokenizer_class": "BertTokenizer",
13
+ "unk_token": "[UNK]"
14
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4ea86c3e8509c5fef6d6b91a39c5f8e73fb0cc9bca85d28f63529a95d83a912
3
+ size 129
vocab.txt ADDED
The diff for this file is too large to render. See raw diff