Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,39 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
from PIL import Image
|
|
|
|
|
4 |
|
5 |
-
# Load the
|
6 |
tokenizer = AutoTokenizer.from_pretrained("neulab/UIX-Qwen2")
|
7 |
-
model =
|
8 |
|
9 |
-
# Function to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def predict_coordinates(screenshot, prompt):
|
11 |
-
#
|
12 |
-
|
13 |
|
|
|
14 |
inputs = tokenizer(prompt, return_tensors="pt")
|
15 |
-
outputs = model(**inputs)
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Gradio Interface
|
23 |
with gr.Blocks() as demo:
|
@@ -34,4 +50,4 @@ with gr.Blocks() as demo:
|
|
34 |
submit_button.click(predict_coordinates, inputs=[screenshot, prompt], outputs=output)
|
35 |
|
36 |
# Launch the Gradio app
|
37 |
-
demo.launch()
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
|
2 |
+
import torch
|
3 |
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
|
7 |
+
# Load the model and tokenizer
|
8 |
tokenizer = AutoTokenizer.from_pretrained("neulab/UIX-Qwen2")
|
9 |
+
model = AutoModel.from_pretrained("neulab/UIX-Qwen2")
|
10 |
|
11 |
+
# Function to preprocess the image (for simplicity, assume basic resizing)
|
12 |
+
def preprocess_image(image):
|
13 |
+
# Resize the image to the expected input size (placeholder, adjust for actual size needed by the model)
|
14 |
+
image = image.resize((224, 224)) # Example size
|
15 |
+
image = np.array(image).astype(np.float32) / 255.0 # Normalize to [0, 1]
|
16 |
+
image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) # Convert to tensor, add batch dim
|
17 |
+
return image
|
18 |
+
|
19 |
+
# Function to predict coordinates based on screenshot and prompt
|
20 |
def predict_coordinates(screenshot, prompt):
|
21 |
+
# Preprocess the image (screenshot)
|
22 |
+
image_tensor = preprocess_image(screenshot)
|
23 |
|
24 |
+
# Tokenize the prompt (text input)
|
25 |
inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
26 |
|
27 |
+
# Assuming model accepts both image and text as input (adjust according to model's actual input requirement)
|
28 |
+
outputs = model(**inputs, pixel_values=image_tensor)
|
29 |
+
|
30 |
+
# The output could be logits or raw coordinates; we assume coordinates here (adjust based on model output)
|
31 |
+
coordinates = outputs.logits # Placeholder: adapt to actual model's coordinate prediction output
|
32 |
+
|
33 |
+
# Convert logits to coordinates (this is an example, adjust based on model's actual output format)
|
34 |
+
x, y = torch.argmax(coordinates, dim=-1).tolist() # Example conversion to (x, y)
|
35 |
+
|
36 |
+
return {"x": x, "y": y}
|
37 |
|
38 |
# Gradio Interface
|
39 |
with gr.Blocks() as demo:
|
|
|
50 |
submit_button.click(predict_coordinates, inputs=[screenshot, prompt], outputs=output)
|
51 |
|
52 |
# Launch the Gradio app
|
53 |
+
demo.launch()
|