Spaces:
Runtime error
Runtime error
File size: 23,012 Bytes
3bbba47 1aaea48 3bbba47 1aaea48 3bbba47 1aaea48 3bbba47 5179973 3bbba47 d8b7bfc 3bbba47 d8b7bfc 3bbba47 5179973 d8b7bfc 3bbba47 d8b7bfc 3bbba47 5179973 3bbba47 fdf6c1c 3c175df 3bbba47 ce3ce58 5179973 ce3ce58 bdcef78 ce3ce58 3bbba47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
import argparse
import datetime
import json
import os
import time
import gradio as gr
import requests
from llava.conversation import (default_conversation, conv_templates,
SeparatorStyle)
from llava.constants import LOGDIR
from llava.utils import (build_logger, server_error_msg,
violates_moderation, moderation_msg)
import hashlib
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "UGround Client"}
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
priority = {
"vicuna-13b": "aaaaaaa",
"koala-13b": "aaaaaab",
}
from PIL import Image
import io
import base64
def resize_image(image, default_width=(1344, 896), request_width=None):
# 如果 request 中指定了 width,则使用传入的值
if request_width:
default_width = request_width
original_width, original_height = image.size
print("Original size:", original_width, original_height)
# 根据宽高比决定 resize 逻辑
if original_width >= original_height:
# 根据 width 的值进行 resize
new_width = default_width[0]
resize_scale = new_width / original_width
new_height = round(original_height * resize_scale)
else:
# 根据 width 的值进行 resize
new_width = default_width[1]
resize_scale = new_width / original_width
new_height = round(original_height * resize_scale)
# 调整图像大小
resized_image = image.resize((new_width, new_height))
print("After initial resize:", new_width, new_height)
# 如果高度仍然超过 2016,则将图片固定调整为 896x2016
if new_height > 2016:
new_width, new_height = 672, 2016
resized_image = resized_image.resize((new_width, new_height))
print("Adjusted to fixed size:", new_width, new_height)
return resized_image
from PIL import Image, ImageDraw
def draw_circle_on_image(image, x, y, radius=20, color=(255, 0, 0)):
# 获取图片的宽度和高度
img_width, img_height = image.size
# 判断 x 坐标是否在图片范围内
if not (0 <= x <= img_width):
print(f"x 坐标 {x} 不在图片宽度范围内,直接返回原图。")
return image
# 判断 y 坐标是否在图片范围内
if not (0 <= y <= img_height):
print(f"y 坐标 {y} 超出了图片高度范围,尝试减去 224。")
y -= 224
# 如果调整后的 y 坐标仍然超出范围,返回原图
if not (0 <= y <= img_height):
print(f"调整后的 y 坐标 {y} 仍然超出了图片范围,直接返回原图。")
return image
# 创建一个可以在图片上绘制的对象
draw = ImageDraw.Draw(image)
# 定义圆圈的外接矩形框
left_up_point = (x - radius, y - radius)
right_down_point = (x + radius, y + radius)
# 绘制圆圈 (outline 参数设置圆圈的颜色,width 设置线条粗细)
draw.ellipse([left_up_point, right_down_point], outline=color, width=5)
return image,(x,y)
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def get_model_list():
ret = requests.post(args.controller_url + "/refresh_all_workers")
assert ret.status_code == 200
ret = requests.post(args.controller_url + "/list_models")
models = ret.json()["models"]
models.sort(key=lambda x: priority.get(x, x))
logger.info(f"Models: {models}")
return models
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def load_demo(url_params, request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
dropdown_update = gr.Dropdown(visible=True)
if "model" in url_params:
model = url_params["model"]
if model in models:
dropdown_update = gr.Dropdown(value=model, visible=True)
state = default_conversation.copy()
return state, dropdown_update
def load_demo_refresh_model_list(request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}")
models = get_model_list()
state = default_conversation.copy()
dropdown_update = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else ""
)
return state, dropdown_update
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"model": model_selector,
"state": state.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
def upvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, "upvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def downvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, "downvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def flag_last_response(state, model_selector, request: gr.Request):
logger.info(f"flag. ip: {request.client.host}")
vote_last_response(state, "flag", model_selector, request)
return ("",) + (disable_btn,) * 3
def regenerate(state, image_process_mode, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def add_text(state, text, image, image_process_mode, request: gr.Request):
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
if len(text) <= 0 and image is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (
no_change_btn,) * 5
text = text[:500] # Hard cut-off
text=f"In the screenshot, where are the pixel coordinates (x, y) of the element corresponding to \"{text}\"?"
if image is not None:
text = text[:1200] # Hard cut-off for images
if '<image>' not in text:
# text = '<Image><image></Image>' + text
text = text + '\n<image>'
resized_image = resize_image(image)
text = (text, resized_image, image_process_mode)
if len(state.get_images(return_pil=True)) > 0:
state = default_conversation.copy()
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
model_name = model_selector
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
if len(state.messages) == state.offset + 2:
# First round of conversation
if "llava" in model_name.lower():
if 'llama-2' in model_name.lower():
template_name = "llava_llama_2"
elif "mistral" in model_name.lower() or "mixtral" in model_name.lower():
if 'orca' in model_name.lower():
template_name = "mistral_orca"
elif 'hermes' in model_name.lower():
template_name = "chatml_direct"
else:
template_name = "mistral_instruct"
elif 'llava-v1.6-34b' in model_name.lower():
template_name = "chatml_direct"
elif "v1" in model_name.lower():
if 'mmtag' in model_name.lower():
template_name = "v1_mmtag"
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
template_name = "v1_mmtag"
else:
template_name = "llava_v1"
elif "mpt" in model_name.lower():
template_name = "mpt"
else:
if 'mmtag' in model_name.lower():
template_name = "v0_mmtag"
elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
template_name = "v0_mmtag"
else:
template_name = "llava_v0"
elif "mpt" in model_name:
template_name = "mpt_text"
elif "llama-2" in model_name:
template_name = "llama_2"
else:
template_name = "vicuna_v1"
new_state = conv_templates[template_name].copy()
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
state = new_state
# Query worker address
controller_url = args.controller_url
ret = requests.post(controller_url + "/get_worker_address",
json={"model": model_name})
worker_addr = ret.json()["address"]
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
# No available worker
if worker_addr == "":
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
# Construct prompt
prompt = state.get_prompt()
all_images = state.get_images(return_pil=True)
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
for image, hash in zip(all_images, all_image_hash):
t = datetime.datetime.now()
filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
image.save(filename)
# Make requests
pload = {
"model": model_name,
"prompt": prompt,
"temperature": float(temperature),
"top_p": float(top_p),
"max_new_tokens": min(int(max_new_tokens), 1536),
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
"images": f'List of {len(state.get_images())} images: {all_image_hash}',
}
logger.info(f"==== request ====\n{pload}")
pload['images'] = state.get_images()
state.messages[-1][-1] = "▌"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
try:
# Stream output
full_output = ""
response = requests.post(worker_addr + "/worker_generate_stream",
headers=headers, json=pload, stream=True, timeout=10)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][len(prompt):].strip()
state.messages[-1][-1] = output + "▌"
# full_output += output
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
else:
output = data["text"] + f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
time.sleep(0.03)
# full_output=state.messages[-1][-1]
# if "▌" in full_output:
# full_output=full_output[:-1]
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
full_output=state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
# print(f"Complete output: {full_output}")
# logger.info(f"Complete output: {full_output}")
finish_tstamp = time.time()
logger.info(f"{output}")
print(f"Complete output: {full_output}")
logger.info(f"Complete output: {full_output}")
full_output=output
logger.info(f"{output}")
print(f"Complete output: {full_output}")
logger.info(f"Complete output: {full_output}")
original_coord=(0,0)
try:
original_coord = eval(full_output)
logger.info(f"successfully get {original_coord}")
except Exception as e:
logger.info(f"{e}")
if len(all_images) > 0:
# 假设我们对第一张图片进行 resize 并展示
resized_image,coordinates = draw_circle_on_image(resize_image(all_images[0]),original_coord[0],original_coord[1])
# state.append_message(state.roles[1], ("", resized_image,"Default"))
yield (state, state.to_gradio_chatbot(resized_image,coordinates)) + (enable_btn,) * 5
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(finish_tstamp, 4),
"state": state.dict(),
"images": all_image_hash,
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
title_markdown = ("""
# UGround: Universal Visual Grounding for GUI Agents
[[Project Homepage](https://osu-nlp-group.github.io/UGround/)] [[Code](https://github.com/OSU-NLP-Group/UGround)] [[Model](https://huggingface.co/osunlp/UGround)] | 📚 [[Paper](https://arxiv.org/abs/2410.05243)]]
""")
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI. Please contact us if you find any potential violation.
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
#chatbot img {
max-width: 80%; /* 宽图片根据宽度调整 */
max-height: 80vh; /* 高图片根据视口高度调整 */
width: auto; /* 保持宽度自适应 */
height: auto; /* 保持高度自适应 */
object-fit: contain; /* 保持图片宽高比,不失真 */
}
"""
def build_demo(embed_mode, cur_dir=None, concurrency_count=1):
textbox = gr.Textbox(show_label=False, placeholder="Enter an element description (referring expression) and press ENTER", container=False)
with gr.Blocks(title="UGround", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
if not embed_mode:
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
interactive=True,
show_label=False,
container=False)
# model_selector="llava-UGround-v1-4bit"
imagebox = gr.Image(type="pil")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
if cur_dir is None:
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(examples=[
[f"{cur_dir}/amazon.jpg",f"Search bar at the top of the page"],
# [f"{cur_dir}/examples/waterview.jpg", "What are the things I should be cautious about when I visit here?"],
], inputs=[imagebox, textbox])
# temperature=0
# top_p=0.7
# max_output_tokens=16384
#
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="UGround Chatbot",
height=650,
# min_width=400,
layout="panel",
)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
#stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
if not embed_mode:
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn]
)
downvote_btn.click(
downvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn]
)
flag_btn.click(
flag_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn]
)
regenerate_btn.click(
regenerate,
[state, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list
).then(
http_bot,
[state, model_selector, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
concurrency_limit=concurrency_count
)
clear_btn.click(
clear_history,
None,
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
)
textbox.submit(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
).then(
http_bot,
[state, model_selector, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
concurrency_limit=concurrency_count
)
submit_btn.click(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list
).then(
http_bot,
[state, model_selector, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
concurrency_limit=concurrency_count
)
if args.model_list_mode == "once":
demo.load(
load_demo,
[url_params],
[state, model_selector],
_js=get_window_url_params
)
elif args.model_list_mode == "reload":
demo.load(
load_demo_refresh_model_list,
None,
[state, model_selector],
queue=False
)
else:
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument("--controller-url", type=str, default="http://localhost:21001")
parser.add_argument("--concurrency-count", type=int, default=2)
parser.add_argument("--model-list-mode", type=str, default="once",
choices=["once", "reload"])
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
models = get_model_list()
logger.info(args)
demo = build_demo(args.embed, concurrency_count=args.concurrency_count)
demo.queue(
api_open=False
).launch(
server_name=args.host,
server_port=args.port,
share=args.share
)
|