import gradio as gr from llama_cpp import Llama # Load the Mistral model llm = Llama.from_pretrained( repo_id="bartowski/Mistral-Small-Instruct-2409-GGUF", filename="Mistral-Small-Instruct-2409-Q5_K_L.gguf", ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message or "You are a friendly Chatbot."}] # Add history to messages, ensuring no None values for val in history: user_message = val[0] if val[0] is not None else "" assistant_message = val[1] if val[1] is not None else "" if user_message: messages.append({"role": "user", "content": user_message}) if assistant_message: messages.append({"role": "assistant", "content": assistant_message}) # Add the current user message, ensure it's not None if message: messages.append({"role": "user", "content": message}) # Generate the response using the Mistral model response = llm.create_chat_completion(messages=messages) print("response:", response) return response["choices"][0]["message"]["content"] # Adjust based on your model's output format # Set up Gradio Chat Interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()