Spaces:
Runtime error
Runtime error
File size: 9,010 Bytes
2da8c28 1aef6a5 2da8c28 61fb910 12df686 61fb910 2da8c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import os
import faiss
import numpy as np
import fitz # PyMuPDF for PDF processing
from sentence_transformers import SentenceTransformer
from groq import Groq
import gradio as gr
import logging
import pickle
# Initialize logging to track events and errors
logging.basicConfig(filename='query_logs.log', level=logging.INFO)
# Securely load GROQ API key from environment variables
grog_api_key = "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"
if not grog_api_key:
raise ValueError("GROQ_API_KEY environment variable not set.")
client = Groq(api_key=grog_api_key)
# Path to the PDF file containing pharmaceutical content
book_path = 'martins-physical-pharmacy-6th-ed-2011-dr-murtadha-alshareifi.pdf'
# Function to read and extract text from the PDF
def read_pdf(file_path):
try:
doc = fitz.open(file_path)
text_data = []
for page_num in range(doc.page_count):
page = doc.load_page(page_num)
text = page.get_text("text")
text_data.append(text)
return text_data
except Exception as e:
logging.error(f"Error reading PDF: {str(e)}")
return []
# Function to split text into paragraphs
def split_text_into_paragraphs(text_pages, max_tokens=300):
chunks = []
for page in text_pages:
paragraphs = page.split('\n\n')
chunk = ""
for para in paragraphs:
if len(chunk) + len(para) <= max_tokens:
chunk += para + "\n"
else:
chunks.append(chunk.strip())
chunk = para + "\n"
if chunk:
chunks.append(chunk.strip())
return chunks
# Function to vectorize text chunks and create a FAISS index
def vectorize_text(chunks, batch_size=100, save_path="embeddings.pkl"):
if os.path.exists(save_path):
with open(save_path, "rb") as f:
index = pickle.load(f)
return index, chunks
try:
model = SentenceTransformer('all-MiniLM-L6-v2')
embeddings = []
index = faiss.IndexFlatL2(384)
for i in range(0, len(chunks), batch_size):
chunk_batch = chunks[i:i + batch_size]
batch_embeddings = model.encode(chunk_batch, show_progress_bar=True)
embeddings.append(batch_embeddings)
index.add(np.array(batch_embeddings))
with open(save_path, "wb") as f:
pickle.dump(index, f)
return index, chunks
except Exception as e:
logging.error(f"Error during vectorization: {str(e)}")
return None, None
# Load and vectorize PDF content
text_pages = read_pdf(book_path)
if not text_pages:
raise RuntimeError("Failed to read PDF content. Check logs for details.")
chunks = split_text_into_paragraphs(text_pages)
vector_index, chunks = vectorize_text(chunks)
if vector_index is None or chunks is None:
raise RuntimeError("Vectorization failed. Check logs for details.")
# Function to generate query embeddings
def generate_query_embedding(query, model):
return model.encode([query])
# Function to check relevancy based on distance threshold
def check_relevancy(distances, threshold=1):
return distances[0][0] <= threshold
# System prompt defining the chatbot's attributes and response structure
system_prompt = """
You are **PharmaExpert Pro**, an advanced chatbot specialized in the field of pharmaceutical sciences. Your responses should be structured, concise, and informative, making complex topics accessible.
# Response Structure:
1. **Overview**: Start with a brief context to set the user’s expectations.
2. **Definition**: Clearly define the concept being queried.
3. **In-Depth Analysis**: Provide a detailed breakdown of concepts, including:
- Examples
- Relevant formulas (if applicable)
- Learning processes
- Working mechanisms
- Purpose
- Advantages and disadvantages
- Role in the broader topic
4. **Summary**: Conclude with a short summary of essential takeaways, ensuring clarity and retention.
# Communication Style:
- **Professional yet Accessible**: Keep language rigorous yet clear.
- **Concise and Informative**: Avoid excess details while covering the core information.
- **Encouraging Exploration**: Foster an environment for follow-up questions.
# Unique Qualities:
1. **Source-Specific Expertise**: Refer only to the provided PDF.
2. **Educational Tools**: Use summaries and key points.
3. **Adaptability**: Adjust responses based on the user’s expertise level.
"""
# Function to generate a single, comprehensive answer
def generate_answer(query):
model = SentenceTransformer('all-MiniLM-L6-v2')
query_embedding = generate_query_embedding(query, model)
D, I = vector_index.search(np.array(query_embedding), k=5)
if check_relevancy(D):
relevant_chunks = [chunks[i] for i in I[0]]
combined_text = " ".join(relevant_chunks)
user_prompt = f"The user has inquired about a complex pharmaceutical topic. Query: {query}"
assistant_prompt = f"""
Using the following context from the pharmacy PDF, respond with structured detail. **Avoid external citations in your answer.**
**Context:**
{combined_text}
**User's question:**
{query}
**Response Structure:**
- **Concept Overview**
- **Contextual Relevance**
- **Overview of the Concept**
- **Definition**
- **Foundations**
- **Examples** (including relevant case studies)
- **Formulas** (if available)
- **Key Terms and Definitions**
- **Key Vocabulary**
- **Historical Context**
- **Applications and Practical Uses**
- **Step-by-Step Explanation** of processes or calculations
- **Visual Aids** (suggestions for diagrams or graphs)
- **Visual Aids Explanation**
- **Purpose and Significance**
- **Common Misconceptions**
- **Key Challenges and Controversies** in the field
- **Practical Exercises**
- **Comparative Analysis**
- **Future Implications**
- **Future Directions** or potential advancements
- **Cultural Context**
- **Fun Activities**
- **Quiz Questions** 7 quiz
- **Step-by-Step Guide**
- **Interactive Elements**
- **Summative Table** for quick reference
- **Summative Review**
- **Final Summary**
- **Summary**
"""
# **Response Structure:**
# - **Overview of the concept**
# - **Definition**
# - **Examples** (including relevant case studies)
# - **Formulas** (if available)
# - **Key Terms and Definitions**
# - **Historical Context**
# - **Applications and Practical Uses**
# - **Step-by-Step Explanation** of processes or calculations
# - **Visual Aids** (suggestions for diagrams or graphs)
# - **Purpose and significance**
# - **Common Misconceptions**
# - **Key Challenges and Controversies** in the field
# - **Future Directions** or potential advancements
# - **Summative Table** for quick reference
# - **Final Summary**
#''
# """
prompt = system_prompt + "\n\n" + user_prompt + "\n\n" + assistant_prompt
response = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama3-8b-8192",
temperature=0.7,
top_p=0.9,
)
answer = response.choices[0].message.content.strip()
return answer
else:
fallback_prompt = f"The user's question is outside the scope of the PDF content. Provide a general answer without referencing external sources."
fallback_response = client.chat.completions.create(
messages=[{"role": "user", "content": fallback_prompt}],
model="llama3-8b-8192",
temperature=0.7,
top_p=0.9
)
return fallback_response.choices[0].message.content.strip()
# Gradio app interface function
def gradio_interface(user_query):
if user_query.strip() == "":
welcome_message = "Welcome to **Physical Pharmacy Book**! Ask me anything related to pharmaceutical sciences."
return welcome_message
response = generate_answer(user_query)
return response
# Gradio interface setup
with gr.Blocks(css=".footer {display: none;}") as iface:
gr.Markdown(
"""
<h1 style='text-align: center; color: #4CAF50;'>PharmaExpert Pro</h1>
<p style='text-align: center; font-size: 18px; color: #333;'>
Your advanced chatbot for pharmaceutical sciences expertise!
</p>
""",
elem_id="header"
)
chatbot = gr.Chatbot(type="messages", elem_id="chatbot")
msg = gr.Textbox(label="Enter your query", placeholder="Type your question here...", lines=2, max_lines=5)
submit_btn = gr.Button("Submit", elem_id="submit-btn")
def respond(message, chat_history):
chat_history.append({"role": "user", "content": message})
response = generate_answer(message)
chat_history.append({"role": "assistant", "content": response})
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
submit_btn.click(respond, [msg, chatbot], [msg, chatbot])
# Launch the Gradio app
if __name__ == "__main__":
iface.launch()
|