|
import spaces |
|
|
|
import os |
|
import imageio |
|
import numpy as np |
|
import torch |
|
import rembg |
|
from PIL import Image |
|
from torchvision.transforms import v2 |
|
from pytorch_lightning import seed_everything |
|
from omegaconf import OmegaConf |
|
from einops import rearrange, repeat |
|
from tqdm import tqdm |
|
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler |
|
|
|
from src.utils.train_util import instantiate_from_config |
|
from src.utils.camera_util import ( |
|
FOV_to_intrinsics, |
|
get_zero123plus_input_cameras, |
|
get_circular_camera_poses, |
|
) |
|
from src.utils.mesh_util import save_obj, save_glb |
|
from src.utils.infer_util import remove_background, resize_foreground, images_to_video |
|
|
|
import tempfile |
|
from functools import partial |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
import gradio as gr |
|
|
|
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): |
|
""" |
|
Get the rendering camera parameters. |
|
""" |
|
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) |
|
if is_flexicubes: |
|
cameras = torch.linalg.inv(c2ws) |
|
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) |
|
else: |
|
extrinsics = c2ws.flatten(-2) |
|
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) |
|
cameras = torch.cat([extrinsics, intrinsics], dim=-1) |
|
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) |
|
return cameras |
|
|
|
|
|
def images_to_video(images, output_path, fps=30): |
|
|
|
os.makedirs(os.path.dirname(output_path), exist_ok=True) |
|
frames = [] |
|
for i in range(images.shape[0]): |
|
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) |
|
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ |
|
f"Frame shape mismatch: {frame.shape} vs {images.shape}" |
|
assert frame.min() >= 0 and frame.max() <= 255, \ |
|
f"Frame value out of range: {frame.min()} ~ {frame.max()}" |
|
frames.append(frame) |
|
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264') |
|
|
|
|
|
|
|
|
|
|
|
import shutil |
|
|
|
def find_cuda(): |
|
|
|
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') |
|
|
|
if cuda_home and os.path.exists(cuda_home): |
|
return cuda_home |
|
|
|
|
|
nvcc_path = shutil.which('nvcc') |
|
|
|
if nvcc_path: |
|
|
|
cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) |
|
return cuda_path |
|
|
|
return None |
|
|
|
cuda_path = find_cuda() |
|
|
|
if cuda_path: |
|
print(f"CUDA installation found at: {cuda_path}") |
|
else: |
|
print("CUDA installation not found") |
|
|
|
config_path = 'configs/instant-mesh-large.yaml' |
|
config = OmegaConf.load(config_path) |
|
config_name = os.path.basename(config_path).replace('.yaml', '') |
|
model_config = config.model_config |
|
infer_config = config.infer_config |
|
|
|
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False |
|
|
|
device = torch.device('cuda') |
|
|
|
|
|
print('Loading diffusion model ...') |
|
pipeline = DiffusionPipeline.from_pretrained( |
|
"sudo-ai/zero123plus-v1.2", |
|
custom_pipeline="zero123plus", |
|
torch_dtype=torch.float16, |
|
) |
|
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( |
|
pipeline.scheduler.config, timestep_spacing='trailing' |
|
) |
|
|
|
|
|
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model") |
|
state_dict = torch.load(unet_ckpt_path, map_location='cpu') |
|
pipeline.unet.load_state_dict(state_dict, strict=True) |
|
|
|
pipeline = pipeline.to(device) |
|
|
|
|
|
print('Loading reconstruction model ...') |
|
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model") |
|
model = instantiate_from_config(model_config) |
|
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] |
|
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k} |
|
model.load_state_dict(state_dict, strict=True) |
|
|
|
model = model.to(device) |
|
|
|
print('Loading Finished!') |
|
|
|
def check_input_image(input_image): |
|
if input_image is None: |
|
raise gr.Error("No image uploaded!") |
|
|
|
|
|
def preprocess(input_image, do_remove_background): |
|
|
|
rembg_session = rembg.new_session() if do_remove_background else None |
|
|
|
if do_remove_background: |
|
input_image = remove_background(input_image, rembg_session) |
|
input_image = resize_foreground(input_image, 0.85) |
|
|
|
return input_image |
|
|
|
@spaces.GPU |
|
def generate_mvs(input_image, sample_steps, sample_seed): |
|
|
|
seed_everything(sample_seed) |
|
|
|
|
|
z123_image = pipeline( |
|
input_image, |
|
num_inference_steps=sample_steps |
|
).images[0] |
|
|
|
show_image = np.asarray(z123_image, dtype=np.uint8) |
|
show_image = torch.from_numpy(show_image) |
|
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2) |
|
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3) |
|
show_image = Image.fromarray(show_image.numpy()) |
|
|
|
return z123_image, show_image |
|
|
|
|
|
@spaces.GPU |
|
def make3d(images): |
|
|
|
global model |
|
if IS_FLEXICUBES: |
|
model.init_flexicubes_geometry(device, use_renderer=False) |
|
model = model.eval() |
|
|
|
images = np.asarray(images, dtype=np.float32) / 255.0 |
|
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() |
|
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) |
|
|
|
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device) |
|
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device) |
|
|
|
images = images.unsqueeze(0).to(device) |
|
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) |
|
|
|
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name |
|
print(mesh_fpath) |
|
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] |
|
mesh_dirname = os.path.dirname(mesh_fpath) |
|
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") |
|
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
planes = model.forward_planes(images, input_cameras) |
|
|
|
|
|
mesh_out = model.extract_mesh( |
|
planes, |
|
use_texture_map=False, |
|
**infer_config, |
|
) |
|
|
|
vertices, faces, vertex_colors = mesh_out |
|
vertices = vertices[:, [1, 2, 0]] |
|
vertices[:, -1] *= -1 |
|
faces = faces[:, [2, 1, 0]] |
|
|
|
save_obj(vertices, faces, vertex_colors, mesh_fpath) |
|
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) |
|
|
|
print(f"Mesh saved to {mesh_fpath}") |
|
|
|
return mesh_fpath, mesh_glb_fpath |