File size: 21,332 Bytes
cdcfdd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# Adapted from Open-Sora-Plan

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
# --------------------------------------------------------

from dataclasses import dataclass
from typing import Any, Dict, Optional

import torch
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config


from diffusers.models.modeling_utils import ModelMixin

from diffusers.utils import BaseOutput, is_xformers_available
from einops import rearrange
from torch import nn
from diffusers.models.embeddings import PixArtAlphaTextProjection

from allegro.models.transformers.block import to_2tuple, BasicTransformerBlock, AdaLayerNormSingle
from allegro.models.transformers.embedding import PatchEmbed2D

from diffusers.utils import logging

logger = logging.get_logger(__name__)

@dataclass
class Transformer3DModelOutput(BaseOutput):
    """
    The output of [`Transformer2DModel`].

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
            The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
            distributions for the unnoised latent pixels.
    """

    sample: torch.FloatTensor


class AllegroTransformer3DModel(ModelMixin, ConfigMixin):
    _supports_gradient_checkpointing = True

    """
    A 2D Transformer model for image-like data.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            The number of channels in the input and output (specify if the input is **continuous**).
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
            This is fixed during training since it is used to learn a number of position embeddings.
        num_vector_embeds (`int`, *optional*):
            The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*):
            The number of diffusion steps used during training. Pass if at least one of the norm_layers is
            `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
            added to the hidden states.

            During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the `TransformerBlocks` attention should contain a bias parameter.
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        sample_size_t: Optional[int] = None,
        patch_size: Optional[int] = None,
        patch_size_t: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        norm_type: str = "ada_norm",
        norm_elementwise_affine: bool = True,
        norm_eps: float = 1e-5,
        caption_channels: int = None,
        interpolation_scale_h: float = None,
        interpolation_scale_w: float = None,
        interpolation_scale_t: float = None,
        use_additional_conditions: Optional[bool] = None,
        sa_attention_mode: str = "flash", 
        ca_attention_mode: str = 'xformers', 
        downsampler: str = None, 
        use_rope: bool = False,
        model_max_length: int = 300,
    ):
        super().__init__()
        self.use_linear_projection = use_linear_projection
        self.interpolation_scale_t = interpolation_scale_t
        self.interpolation_scale_h = interpolation_scale_h
        self.interpolation_scale_w = interpolation_scale_w
        self.downsampler = downsampler
        self.caption_channels = caption_channels
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim
        self.inner_dim = inner_dim
        self.in_channels = in_channels
        self.out_channels = in_channels if out_channels is None else out_channels
        self.use_rope = use_rope
        self.model_max_length = model_max_length
        self.num_layers = num_layers
        self.config.hidden_size = inner_dim


        # 1. Transformer3DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
        # Define whether input is continuous or discrete depending on configuration
        assert in_channels is not None and patch_size is not None

        # 2. Initialize the right blocks.
        # Initialize the output blocks and other projection blocks when necessary.

        assert self.config.sample_size_t is not None, "AllegroTransformer3DModel over patched input must provide sample_size_t"
        assert self.config.sample_size is not None, "AllegroTransformer3DModel over patched input must provide sample_size"
        #assert not (self.config.sample_size_t == 1 and self.config.patch_size_t == 2), "Image do not need patchfy in t-dim"

        self.num_frames = self.config.sample_size_t
        self.config.sample_size = to_2tuple(self.config.sample_size)
        self.height = self.config.sample_size[0]
        self.width = self.config.sample_size[1]
        self.patch_size_t = self.config.patch_size_t
        self.patch_size = self.config.patch_size
        interpolation_scale_t = ((self.config.sample_size_t - 1) // 16 + 1) if self.config.sample_size_t % 2 == 1 else self.config.sample_size_t / 16
        interpolation_scale_t = (
            self.config.interpolation_scale_t if self.config.interpolation_scale_t is not None else interpolation_scale_t
        )
        interpolation_scale = (
            self.config.interpolation_scale_h if self.config.interpolation_scale_h is not None else self.config.sample_size[0] / 30, 
            self.config.interpolation_scale_w if self.config.interpolation_scale_w is not None else self.config.sample_size[1] / 40, 
        )
        self.pos_embed = PatchEmbed2D(
            num_frames=self.config.sample_size_t,
            height=self.config.sample_size[0],
            width=self.config.sample_size[1],
            patch_size_t=self.config.patch_size_t,
            patch_size=self.config.patch_size,
            in_channels=self.in_channels,
            embed_dim=self.inner_dim,
            interpolation_scale=interpolation_scale, 
            interpolation_scale_t=interpolation_scale_t,
            use_abs_pos=not self.config.use_rope, 
        )
        interpolation_scale_thw = (interpolation_scale_t, *interpolation_scale)

        # 3. Define transformers blocks, spatial attention
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
                    double_self_attention=double_self_attention,
                    upcast_attention=upcast_attention,
                    norm_type=norm_type,
                    norm_elementwise_affine=norm_elementwise_affine,
                    norm_eps=norm_eps,
                    sa_attention_mode=sa_attention_mode,
                    ca_attention_mode=ca_attention_mode, 
                    use_rope=use_rope,
                    interpolation_scale_thw=interpolation_scale_thw, 
                    block_idx=d,
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers

        if norm_type != "ada_norm_single":
            self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
            self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
            self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
        elif norm_type == "ada_norm_single":
            self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
            self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
            self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)

        # 5. PixArt-Alpha blocks.
        self.adaln_single = None
        self.use_additional_conditions = False
        if norm_type == "ada_norm_single":
            # self.use_additional_conditions = self.config.sample_size[0] == 128  # False, 128 -> 1024
            # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
            # additional conditions until we find better name
            self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)

        self.caption_projection = None
        if caption_channels is not None:
            self.caption_projection = PixArtAlphaTextProjection(
                in_features=caption_channels, hidden_size=inner_dim
            )
        
        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        self.gradient_checkpointing = value


    def forward(
        self,
        hidden_states: torch.Tensor,
        timestep: Optional[torch.LongTensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        added_cond_kwargs: Dict[str, torch.Tensor] = None,
        class_labels: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ):
        """
        The [`Transformer2DModel`] forward method.

        Args:
            hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous):
                Input `hidden_states`.
            encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.LongTensor`, *optional*):
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
            class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
                Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
                `AdaLayerZeroNorm`.
            added_cond_kwargs ( `Dict[str, Any]`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AdaLayerNormSingle`
            cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            attention_mask ( `torch.Tensor`, *optional*):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            encoder_attention_mask ( `torch.Tensor`, *optional*):
                Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:

                    * Mask `(batch, sequence_length)` True = keep, False = discard.
                    * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.

                If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
                above. This bias will be added to the cross-attention scores.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        batch_size, c, frame, h, w = hidden_states.shape

        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)        attention_mask_vid, attention_mask_img = None, None
        if attention_mask is not None and attention_mask.ndim == 4:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #   (keep = +0,     discard = -10000.0)
            # b, frame+use_image_num, h, w -> a video with images
            # b, 1, h, w -> only images
            attention_mask = attention_mask.to(self.dtype)
            attention_mask_vid = attention_mask[:, :frame]  # b, frame, h, w

            if attention_mask_vid.numel() > 0:
                attention_mask_vid = attention_mask_vid.unsqueeze(1)  # b 1 t h w
                attention_mask_vid = F.max_pool3d(attention_mask_vid, kernel_size=(self.patch_size_t, self.patch_size, self.patch_size), 
                                                  stride=(self.patch_size_t, self.patch_size, self.patch_size))
                attention_mask_vid = rearrange(attention_mask_vid, 'b 1 t h w -> (b 1) 1 (t h w)') 

            attention_mask_vid = (1 - attention_mask_vid.bool().to(self.dtype)) * -10000.0 if attention_mask_vid.numel() > 0 else None

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 3:  
            # b, 1+use_image_num, l -> a video with images
            # b, 1, l -> only images
            encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0
            encoder_attention_mask_vid = rearrange(encoder_attention_mask, 'b 1 l -> (b 1) 1 l') if encoder_attention_mask.numel() > 0 else None

        # 1. Input
        frame = frame // self.patch_size_t  # patchfy
        # print('frame', frame)
        height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size

        added_cond_kwargs = {"resolution": None, "aspect_ratio": None} if added_cond_kwargs is None else added_cond_kwargs
        hidden_states, encoder_hidden_states_vid, \
        timestep_vid, embedded_timestep_vid = self._operate_on_patched_inputs(
            hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size,
        )


        for _, block in enumerate(self.transformer_blocks):
            hidden_states = block(
                hidden_states,
                attention_mask_vid,
                encoder_hidden_states_vid,
                encoder_attention_mask_vid,
                timestep_vid,
                cross_attention_kwargs,
                class_labels,
                frame=frame, 
                height=height, 
                width=width, 
            )

         # 3. Output
        output = None 
        if hidden_states is not None:
            output = self._get_output_for_patched_inputs(
                hidden_states=hidden_states,
                timestep=timestep_vid,
                class_labels=class_labels,
                embedded_timestep=embedded_timestep_vid,
                num_frames=frame, 
                height=height,
                width=width,
            )  # b c t h w

        if not return_dict:
            return (output,)

        return Transformer3DModelOutput(sample=output)

    def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size):
            # batch_size = hidden_states.shape[0]
            hidden_states_vid = self.pos_embed(hidden_states.to(self.dtype))
            timestep_vid = None
            embedded_timestep_vid = None
            encoder_hidden_states_vid = None

            if self.adaln_single is not None:
                if self.use_additional_conditions and added_cond_kwargs is None:
                    raise ValueError(
                        "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
                    )
                timestep, embedded_timestep = self.adaln_single(
                    timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=self.dtype
                )  # b 6d, b d

                timestep_vid = timestep
                embedded_timestep_vid = embedded_timestep

            if self.caption_projection is not None:
                encoder_hidden_states = self.caption_projection(encoder_hidden_states)  # b, 1+use_image_num, l, d or b, 1, l, d
                encoder_hidden_states_vid = rearrange(encoder_hidden_states[:, :1], 'b 1 l d -> (b 1) l d')

            return hidden_states_vid, encoder_hidden_states_vid, timestep_vid, embedded_timestep_vid

    def _get_output_for_patched_inputs(
        self, hidden_states, timestep, class_labels, embedded_timestep, num_frames, height=None, width=None
    ):  
        # import ipdb;ipdb.set_trace()
        if self.config.norm_type != "ada_norm_single":
            conditioning = self.transformer_blocks[0].norm1.emb(
                timestep, class_labels, hidden_dtype=self.dtype
            )
            shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
            hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
            hidden_states = self.proj_out_2(hidden_states)
        elif self.config.norm_type == "ada_norm_single":
            shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
            hidden_states = self.norm_out(hidden_states)
            # Modulation
            hidden_states = hidden_states * (1 + scale) + shift
            hidden_states = self.proj_out(hidden_states)
            hidden_states = hidden_states.squeeze(1)

        # unpatchify
        if self.adaln_single is None:
            height = width = int(hidden_states.shape[1] ** 0.5)
        hidden_states = hidden_states.reshape(
            shape=(-1, num_frames, height, width, self.patch_size_t, self.patch_size, self.patch_size, self.out_channels)
        )
        hidden_states = torch.einsum("nthwopqc->nctohpwq", hidden_states)
        output = hidden_states.reshape(
            shape=(-1, self.out_channels, num_frames * self.patch_size_t, height * self.patch_size, width * self.patch_size)
        )
        return output