Spaces:
Running
Running
import torch | |
import imageio | |
import os | |
import gradio as gr | |
import subprocess | |
from subprocess import getoutput | |
from diffusers.schedulers import EulerAncestralDiscreteScheduler | |
from transformers import T5EncoderModel, T5Tokenizer | |
from allegro.pipelines.pipeline_allegro import AllegroPipeline | |
from allegro.models.vae.vae_allegro import AllegroAutoencoderKL3D | |
from allegro.models.transformers.transformer_3d_allegro import AllegroTransformer3DModel | |
from huggingface_hub import snapshot_download | |
weights_dir = './allegro_weights' | |
os.makedirs(weights_dir, exist_ok=True) | |
is_shared_ui = True if "fffiloni/allegro-t2v" in os.environ['SPACE_ID'] else False | |
is_gpu_associated = torch.cuda.is_available() | |
if not is_shared_ui: | |
snapshot_download( | |
repo_id='rhymes-ai/Allegro', | |
allow_patterns=[ | |
'scheduler/**', | |
'text_encoder/**', | |
'tokenizer/**', | |
'transformer/**', | |
'vae/**', | |
], | |
local_dir=weights_dir, | |
) | |
if is_gpu_associated: | |
gpu_info = getoutput('nvidia-smi') | |
def single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload): | |
dtype = torch.bfloat16 | |
# Load models | |
vae = AllegroAutoencoderKL3D.from_pretrained( | |
"./allegro_weights/vae/", | |
torch_dtype=torch.float32 | |
).cuda() | |
vae.eval() | |
text_encoder = T5EncoderModel.from_pretrained("./allegro_weights/text_encoder/", torch_dtype=dtype) | |
text_encoder.eval() | |
tokenizer = T5Tokenizer.from_pretrained("./allegro_weights/tokenizer/") | |
scheduler = EulerAncestralDiscreteScheduler() | |
transformer = AllegroTransformer3DModel.from_pretrained("./allegro_weights/transformer/", torch_dtype=dtype).cuda() | |
transformer.eval() | |
allegro_pipeline = AllegroPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
scheduler=scheduler, | |
transformer=transformer | |
).to("cuda:0") | |
positive_prompt = """ | |
(masterpiece), (best quality), (ultra-detailed), (unwatermarked), | |
{} | |
emotional, harmonious, vignette, 4k epic detailed, shot on kodak, 35mm photo, | |
sharp focus, high budget, cinemascope, moody, epic, gorgeous | |
""" | |
negative_prompt = """ | |
nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, | |
low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry. | |
""" | |
# Process user prompt | |
user_prompt = positive_prompt.format(user_prompt.lower().strip()) | |
if enable_cpu_offload: | |
allegro_pipeline.enable_sequential_cpu_offload() | |
out_video = allegro_pipeline( | |
user_prompt, | |
negative_prompt=negative_prompt, | |
num_frames=88, | |
height=720, | |
width=1280, | |
num_inference_steps=num_sampling_steps, | |
guidance_scale=guidance_scale, | |
max_sequence_length=512, | |
generator=torch.Generator(device="cuda:0").manual_seed(seed) | |
).video[0] | |
# Save video | |
os.makedirs(os.path.dirname(save_path), exist_ok=True) | |
imageio.mimwrite(save_path, out_video, fps=15, quality=8) | |
return save_path | |
# Gradio interface function | |
def run_inference(user_prompt, guidance_scale, num_sampling_steps, seed, enable_cpu_offload, progress=gr.Progress(track_tqdm=True)): | |
save_path = "./output_videos/generated_video.mp4" | |
result_path = single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload) | |
return result_path | |
css=""" | |
#upl-dataset-group {background-color: none!important;} | |
div#warning-ready { | |
background-color: #ecfdf5; | |
padding: 0 16px 16px; | |
margin: 20px 0; | |
} | |
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p { | |
color: #057857!important; | |
} | |
div#warning-duplicate { | |
background-color: #ebf5ff; | |
padding: 0 16px 16px; | |
margin: 20px 0; | |
} | |
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { | |
color: #0f4592!important; | |
} | |
div#warning-duplicate strong { | |
color: #0f4592; | |
} | |
p.actions { | |
display: flex; | |
align-items: center; | |
margin: 20px 0; | |
} | |
div#warning-duplicate .actions a { | |
display: inline-block; | |
margin-right: 10px; | |
} | |
div#warning-setgpu { | |
background-color: #fff4eb; | |
padding: 0 16px 16px; | |
margin: 20px 0; | |
} | |
div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p { | |
color: #92220f!important; | |
} | |
div#warning-setgpu a, div#warning-setgpu b { | |
color: #91230f; | |
} | |
div#warning-setgpu p.actions > a { | |
display: inline-block; | |
background: #1f1f23; | |
border-radius: 40px; | |
padding: 6px 24px; | |
color: antiquewhite; | |
text-decoration: none; | |
font-weight: 600; | |
font-size: 1.2em; | |
} | |
""" | |
# Create Gradio interface | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(): | |
gr.Markdown("# Allegro Video Generation") | |
gr.Markdown("Generate a video based on a text prompt using the Allegro pipeline.") | |
with gr.Row(): | |
with gr.Column(): | |
user_prompt=gr.Textbox(label="User Prompt") | |
with gr.Row(): | |
guidance_scale=gr.Slider(minimum=0, maximum=20, step=0.1, label="Guidance Scale", value=7.5) | |
num_sampling_steps=gr.Slider(minimum=10, maximum=100, step=1, label="Number of Sampling Steps", value=20) | |
with gr.Row(): | |
seed=gr.Slider(minimum=0, maximum=10000, step=1, label="Random Seed", value=42) | |
enable_cpu_offload=gr.Checkbox(label="Enable CPU Offload", value=False, scale=1) | |
if is_shared_ui: | |
top_description = gr.HTML(f''' | |
<div class="gr-prose"> | |
<h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> | |
Attention: this Space need to be duplicated to work</h2> | |
<p class="main-message"> | |
To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU.<br /> | |
You'll be able to offload the model into CPU for less GPU memory cost (about 9.3G, compared to 27.5G if CPU offload is not enabled), but the inference time will increase significantly. | |
</p> | |
<p class="actions"> | |
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" /> | |
</a> | |
</p> | |
</div> | |
''', elem_id="warning-duplicate") | |
submit_btn = gr.Button("Generate Video", visible=False) | |
else: | |
if(is_gpu_associated): | |
submit_btn = gr.Button("Generate Video", visible=True) | |
top_description = gr.HTML(f''' | |
<div class="gr-prose"> | |
<h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> | |
You have successfully associated a {gpu_info} GPU to this Space ๐</h2> | |
<p> | |
You can now generate a video! You will be billed by the minute from when you activated the GPU until when it is turned off. | |
</p> | |
</div> | |
''', elem_id="warning-ready") | |
else: | |
top_description = gr.HTML(f''' | |
<div class="gr-prose"> | |
<h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> | |
You have successfully duplicated the Allegro Video Generation Space ๐</h2> | |
<p>There's only one step left before you can generate a video: we recommend to <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a L40S GPU</b> to it (via the Settings tab)</a>. | |
You will be billed by the minute from when you activate the GPU until when it is turned off.</p> | |
<p class="actions"> | |
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">๐ฅ Set recommended GPU</a> | |
</p> | |
</div> | |
''', elem_id="warning-setgpu") | |
submit_btn = gr.Button("Generate Video", visible=False) | |
with gr.Column(): | |
video_output=gr.Video(label="Generated Video") | |
submit_btn.click( | |
fn=run_inference, | |
inputs=[user_prompt, guidance_scale, num_sampling_steps, seed, enable_cpu_offload], | |
outputs=video_output | |
) | |
# Launch the interface | |
demo.launch(show_error=True, show_api=False) | |