# Adapted from Open-Sora-Plan # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan # -------------------------------------------------------- from dataclasses import dataclass from typing import Any, Dict, Optional import torch import torch.nn.functional as F from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin from diffusers.utils import BaseOutput, is_xformers_available from einops import rearrange from torch import nn from diffusers.models.embeddings import PixArtAlphaTextProjection from allegro.models.transformers.block import to_2tuple, BasicTransformerBlock, AdaLayerNormSingle from allegro.models.transformers.embedding import PatchEmbed2D from diffusers.utils import logging logger = logging.get_logger(__name__) @dataclass class Transformer3DModelOutput(BaseOutput): """ The output of [`Transformer2DModel`]. Args: sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability distributions for the unnoised latent pixels. """ sample: torch.FloatTensor class AllegroTransformer3DModel(ModelMixin, ConfigMixin): _supports_gradient_checkpointing = True """ A 2D Transformer model for image-like data. Parameters: num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. in_channels (`int`, *optional*): The number of channels in the input and output (specify if the input is **continuous**). num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). This is fixed during training since it is used to learn a number of position embeddings. num_vector_embeds (`int`, *optional*): The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). Includes the class for the masked latent pixel. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. num_embeds_ada_norm ( `int`, *optional*): The number of diffusion steps used during training. Pass if at least one of the norm_layers is `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. attention_bias (`bool`, *optional*): Configure if the `TransformerBlocks` attention should contain a bias parameter. """ @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, out_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, sample_size: Optional[int] = None, sample_size_t: Optional[int] = None, patch_size: Optional[int] = None, patch_size_t: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, use_linear_projection: bool = False, only_cross_attention: bool = False, double_self_attention: bool = False, upcast_attention: bool = False, norm_type: str = "ada_norm", norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, caption_channels: int = None, interpolation_scale_h: float = None, interpolation_scale_w: float = None, interpolation_scale_t: float = None, use_additional_conditions: Optional[bool] = None, sa_attention_mode: str = "flash", ca_attention_mode: str = 'xformers', downsampler: str = None, use_rope: bool = False, model_max_length: int = 300, ): super().__init__() self.use_linear_projection = use_linear_projection self.interpolation_scale_t = interpolation_scale_t self.interpolation_scale_h = interpolation_scale_h self.interpolation_scale_w = interpolation_scale_w self.downsampler = downsampler self.caption_channels = caption_channels self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim self.inner_dim = inner_dim self.in_channels = in_channels self.out_channels = in_channels if out_channels is None else out_channels self.use_rope = use_rope self.model_max_length = model_max_length self.num_layers = num_layers self.config.hidden_size = inner_dim # 1. Transformer3DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)` # Define whether input is continuous or discrete depending on configuration assert in_channels is not None and patch_size is not None # 2. Initialize the right blocks. # Initialize the output blocks and other projection blocks when necessary. assert self.config.sample_size_t is not None, "AllegroTransformer3DModel over patched input must provide sample_size_t" assert self.config.sample_size is not None, "AllegroTransformer3DModel over patched input must provide sample_size" #assert not (self.config.sample_size_t == 1 and self.config.patch_size_t == 2), "Image do not need patchfy in t-dim" self.num_frames = self.config.sample_size_t self.config.sample_size = to_2tuple(self.config.sample_size) self.height = self.config.sample_size[0] self.width = self.config.sample_size[1] self.patch_size_t = self.config.patch_size_t self.patch_size = self.config.patch_size interpolation_scale_t = ((self.config.sample_size_t - 1) // 16 + 1) if self.config.sample_size_t % 2 == 1 else self.config.sample_size_t / 16 interpolation_scale_t = ( self.config.interpolation_scale_t if self.config.interpolation_scale_t is not None else interpolation_scale_t ) interpolation_scale = ( self.config.interpolation_scale_h if self.config.interpolation_scale_h is not None else self.config.sample_size[0] / 30, self.config.interpolation_scale_w if self.config.interpolation_scale_w is not None else self.config.sample_size[1] / 40, ) self.pos_embed = PatchEmbed2D( num_frames=self.config.sample_size_t, height=self.config.sample_size[0], width=self.config.sample_size[1], patch_size_t=self.config.patch_size_t, patch_size=self.config.patch_size, in_channels=self.in_channels, embed_dim=self.inner_dim, interpolation_scale=interpolation_scale, interpolation_scale_t=interpolation_scale_t, use_abs_pos=not self.config.use_rope, ) interpolation_scale_thw = (interpolation_scale_t, *interpolation_scale) # 3. Define transformers blocks, spatial attention self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, double_self_attention=double_self_attention, upcast_attention=upcast_attention, norm_type=norm_type, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, sa_attention_mode=sa_attention_mode, ca_attention_mode=ca_attention_mode, use_rope=use_rope, interpolation_scale_thw=interpolation_scale_thw, block_idx=d, ) for d in range(num_layers) ] ) # 4. Define output layers if norm_type != "ada_norm_single": self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim) self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) elif norm_type == "ada_norm_single": self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) # 5. PixArt-Alpha blocks. self.adaln_single = None self.use_additional_conditions = False if norm_type == "ada_norm_single": # self.use_additional_conditions = self.config.sample_size[0] == 128 # False, 128 -> 1024 # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use # additional conditions until we find better name self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions) self.caption_projection = None if caption_channels is not None: self.caption_projection = PixArtAlphaTextProjection( in_features=caption_channels, hidden_size=inner_dim ) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): self.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, timestep: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, added_cond_kwargs: Dict[str, torch.Tensor] = None, class_labels: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, return_dict: bool = True, ): """ The [`Transformer2DModel`] forward method. Args: hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous): Input `hidden_states`. encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in `AdaLayerZeroNorm`. added_cond_kwargs ( `Dict[str, Any]`, *optional*): A kwargs dictionary that if specified is passed along to the `AdaLayerNormSingle` cross_attention_kwargs ( `Dict[str, Any]`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). attention_mask ( `torch.Tensor`, *optional*): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. encoder_attention_mask ( `torch.Tensor`, *optional*): Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: * Mask `(batch, sequence_length)` True = keep, False = discard. * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ batch_size, c, frame, h, w = hidden_states.shape # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) attention_mask_vid, attention_mask_img = None, None if attention_mask is not None and attention_mask.ndim == 4: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) # b, frame+use_image_num, h, w -> a video with images # b, 1, h, w -> only images attention_mask = attention_mask.to(self.dtype) attention_mask_vid = attention_mask[:, :frame] # b, frame, h, w if attention_mask_vid.numel() > 0: attention_mask_vid = attention_mask_vid.unsqueeze(1) # b 1 t h w attention_mask_vid = F.max_pool3d(attention_mask_vid, kernel_size=(self.patch_size_t, self.patch_size, self.patch_size), stride=(self.patch_size_t, self.patch_size, self.patch_size)) attention_mask_vid = rearrange(attention_mask_vid, 'b 1 t h w -> (b 1) 1 (t h w)') attention_mask_vid = (1 - attention_mask_vid.bool().to(self.dtype)) * -10000.0 if attention_mask_vid.numel() > 0 else None # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 3: # b, 1+use_image_num, l -> a video with images # b, 1, l -> only images encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0 encoder_attention_mask_vid = rearrange(encoder_attention_mask, 'b 1 l -> (b 1) 1 l') if encoder_attention_mask.numel() > 0 else None # 1. Input frame = frame // self.patch_size_t # patchfy # print('frame', frame) height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size added_cond_kwargs = {"resolution": None, "aspect_ratio": None} if added_cond_kwargs is None else added_cond_kwargs hidden_states, encoder_hidden_states_vid, \ timestep_vid, embedded_timestep_vid = self._operate_on_patched_inputs( hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size, ) for _, block in enumerate(self.transformer_blocks): hidden_states = block( hidden_states, attention_mask_vid, encoder_hidden_states_vid, encoder_attention_mask_vid, timestep_vid, cross_attention_kwargs, class_labels, frame=frame, height=height, width=width, ) # 3. Output output = None if hidden_states is not None: output = self._get_output_for_patched_inputs( hidden_states=hidden_states, timestep=timestep_vid, class_labels=class_labels, embedded_timestep=embedded_timestep_vid, num_frames=frame, height=height, width=width, ) # b c t h w if not return_dict: return (output,) return Transformer3DModelOutput(sample=output) def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size): # batch_size = hidden_states.shape[0] hidden_states_vid = self.pos_embed(hidden_states.to(self.dtype)) timestep_vid = None embedded_timestep_vid = None encoder_hidden_states_vid = None if self.adaln_single is not None: if self.use_additional_conditions and added_cond_kwargs is None: raise ValueError( "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." ) timestep, embedded_timestep = self.adaln_single( timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=self.dtype ) # b 6d, b d timestep_vid = timestep embedded_timestep_vid = embedded_timestep if self.caption_projection is not None: encoder_hidden_states = self.caption_projection(encoder_hidden_states) # b, 1+use_image_num, l, d or b, 1, l, d encoder_hidden_states_vid = rearrange(encoder_hidden_states[:, :1], 'b 1 l d -> (b 1) l d') return hidden_states_vid, encoder_hidden_states_vid, timestep_vid, embedded_timestep_vid def _get_output_for_patched_inputs( self, hidden_states, timestep, class_labels, embedded_timestep, num_frames, height=None, width=None ): # import ipdb;ipdb.set_trace() if self.config.norm_type != "ada_norm_single": conditioning = self.transformer_blocks[0].norm1.emb( timestep, class_labels, hidden_dtype=self.dtype ) shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] hidden_states = self.proj_out_2(hidden_states) elif self.config.norm_type == "ada_norm_single": shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) # Modulation hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.squeeze(1) # unpatchify if self.adaln_single is None: height = width = int(hidden_states.shape[1] ** 0.5) hidden_states = hidden_states.reshape( shape=(-1, num_frames, height, width, self.patch_size_t, self.patch_size, self.patch_size, self.out_channels) ) hidden_states = torch.einsum("nthwopqc->nctohpwq", hidden_states) output = hidden_states.reshape( shape=(-1, self.out_channels, num_frames * self.patch_size_t, height * self.patch_size, width * self.patch_size) ) return output