import torch import imageio import os import gradio as gr from diffusers.schedulers import EulerAncestralDiscreteScheduler from transformers import T5EncoderModel, T5Tokenizer from allegro.pipelines.pipeline_allegro import AllegroPipeline from allegro.models.vae.vae_allegro import AllegroAutoencoderKL3D from allegro.models.transformers.transformer_3d_allegro import AllegroTransformer3DModel from huggingface_hub import snapshot_download weights_dir = './allegro_weights' os.makedirs(weights_dir, exist_ok=True) snapshot_download( repo_id='rhymes-ai/Allegro', allow_patterns=[ 'scheduler/**', 'text_encoder/**', 'tokenizer/**', 'transformer/**', 'vae/**', ], local_dir=weights_dir, ) def single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload): dtype = torch.bfloat16 # Load models vae = AllegroAutoencoderKL3D.from_pretrained( "./allegro_weights/vae/", torch_dtype=torch.float32 ).cuda() vae.eval() text_encoder = T5EncoderModel.from_pretrained("./allegro_weights/text_encoder/", torch_dtype=dtype) text_encoder.eval() tokenizer = T5Tokenizer.from_pretrained("./allegro_weights/tokenizer/") scheduler = EulerAncestralDiscreteScheduler() transformer = AllegroTransformer3DModel.from_pretrained("./allegro_weights/transformer/", torch_dtype=dtype).cuda() transformer.eval() allegro_pipeline = AllegroPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, transformer=transformer ).to("cuda:0") positive_prompt = """ (masterpiece), (best quality), (ultra-detailed), (unwatermarked), {} emotional, harmonious, vignette, 4k epic detailed, shot on kodak, 35mm photo, sharp focus, high budget, cinemascope, moody, epic, gorgeous """ negative_prompt = """ nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry. """ # Process user prompt user_prompt = positive_prompt.format(user_prompt.lower().strip()) if enable_cpu_offload: allegro_pipeline.enable_sequential_cpu_offload() out_video = allegro_pipeline( user_prompt, negative_prompt=negative_prompt, num_frames=88, height=720, width=1280, num_inference_steps=num_sampling_steps, guidance_scale=guidance_scale, max_sequence_length=512, generator=torch.Generator(device="cuda:0").manual_seed(seed) ).video[0] # Save video os.makedirs(os.path.dirname(save_path), exist_ok=True) imageio.mimwrite(save_path, out_video, fps=15, quality=8) return save_path # Gradio interface function def run_inference(user_prompt, guidance_scale, num_sampling_steps, seed, enable_cpu_offload, progress=gr.Progress(track_tqdm=True)): save_path = "./output_videos/generated_video.mp4" result_path = single_inference(user_prompt, save_path, guidance_scale, num_sampling_steps, seed, enable_cpu_offload) return result_path # Create Gradio interface iface = gr.Interface( fn=run_inference, inputs=[ gr.Textbox(label="User Prompt"), gr.Slider(minimum=0, maximum=20, step=0.1, label="Guidance Scale", value=7.5), gr.Slider(minimum=10, maximum=200, step=1, label="Number of Sampling Steps", value=100), gr.Slider(minimum=0, maximum=10000, step=1, label="Random Seed", value=42), gr.Checkbox(label="Enable CPU Offload", value=False), ], outputs=gr.Video(label="Generated Video"), title="Allegro Video Generation", description="Generate a video based on a text prompt using the Allegro pipeline." ) # Launch the interface iface.launch()