Spaces:
Build error
Build error
File size: 11,352 Bytes
f1f433f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import json
import sys
import threading
import traceback
from pathlib import Path
from typing import Dict, List, Optional
from uuid import UUID, uuid4
import numpy as np
import pyopenjtalk
from fastapi import HTTPException
from pydantic import conint
from .model import UserDictWord, WordTypes
from .part_of_speech_data import MAX_PRIORITY, MIN_PRIORITY, part_of_speech_data
from .utility import engine_root, get_save_dir, mutex_wrapper
root_dir = engine_root()
save_dir = get_save_dir()
if not save_dir.is_dir():
save_dir.mkdir(parents=True)
default_dict_path = root_dir / "default.csv"
user_dict_path = save_dir / "user_dict.json"
compiled_dict_path = save_dir / "user.dic"
mutex_user_dict = threading.Lock()
mutex_openjtalk_dict = threading.Lock()
@mutex_wrapper(mutex_user_dict)
def write_to_json(user_dict: Dict[str, UserDictWord], user_dict_path: Path):
converted_user_dict = {}
for word_uuid, word in user_dict.items():
word_dict = word.dict()
word_dict["cost"] = priority2cost(
word_dict["context_id"], word_dict["priority"]
)
del word_dict["priority"]
converted_user_dict[word_uuid] = word_dict
# 予めjsonに変換できることを確かめる
user_dict_json = json.dumps(converted_user_dict, ensure_ascii=False)
user_dict_path.write_text(user_dict_json, encoding="utf-8")
@mutex_wrapper(mutex_openjtalk_dict)
def update_dict(
default_dict_path: Path = default_dict_path,
user_dict_path: Path = user_dict_path,
compiled_dict_path: Path = compiled_dict_path,
):
random_string = uuid4()
tmp_csv_path = save_dir / f".tmp.dict_csv-{random_string}"
tmp_compiled_path = save_dir / f".tmp.dict_compiled-{random_string}"
try:
# 辞書.csvを作成
csv_text = ""
if not default_dict_path.is_file():
print("Warning: Cannot find default dictionary.", file=sys.stderr)
return
default_dict = default_dict_path.read_text(encoding="utf-8")
if default_dict == default_dict.rstrip():
default_dict += "\n"
csv_text += default_dict
user_dict = read_dict(user_dict_path=user_dict_path)
for word_uuid in user_dict:
word = user_dict[word_uuid]
csv_text += (
"{surface},{context_id},{context_id},{cost},{part_of_speech},"
+ "{part_of_speech_detail_1},{part_of_speech_detail_2},"
+ "{part_of_speech_detail_3},{inflectional_type},"
+ "{inflectional_form},{stem},{yomi},{pronunciation},"
+ "{accent_type}/{mora_count},{accent_associative_rule}\n"
).format(
surface=word.surface,
context_id=word.context_id,
cost=priority2cost(word.context_id, word.priority),
part_of_speech=word.part_of_speech,
part_of_speech_detail_1=word.part_of_speech_detail_1,
part_of_speech_detail_2=word.part_of_speech_detail_2,
part_of_speech_detail_3=word.part_of_speech_detail_3,
inflectional_type=word.inflectional_type,
inflectional_form=word.inflectional_form,
stem=word.stem,
yomi=word.yomi,
pronunciation=word.pronunciation,
accent_type=word.accent_type,
mora_count=word.mora_count,
accent_associative_rule=word.accent_associative_rule,
)
tmp_csv_path.write_text(csv_text, encoding="utf-8")
# 辞書.csvをOpenJTalk用にコンパイル
pyopenjtalk.create_user_dict(str(tmp_csv_path), str(tmp_compiled_path))
if not tmp_compiled_path.is_file():
raise RuntimeError("辞書のコンパイル時にエラーが発生しました。")
# コンパイル済み辞書の置き換え・読み込み
pyopenjtalk.unset_user_dict()
tmp_compiled_path.replace(compiled_dict_path)
if compiled_dict_path.is_file():
pyopenjtalk.set_user_dict(str(compiled_dict_path.resolve(strict=True)))
except Exception as e:
print("Error: Failed to update dictionary.", file=sys.stderr)
traceback.print_exc(file=sys.stderr)
raise e
finally:
# 後処理
if tmp_csv_path.exists():
tmp_csv_path.unlink()
if tmp_compiled_path.exists():
tmp_compiled_path.unlink()
@mutex_wrapper(mutex_user_dict)
def read_dict(user_dict_path: Path = user_dict_path) -> Dict[str, UserDictWord]:
if not user_dict_path.is_file():
return {}
with user_dict_path.open(encoding="utf-8") as f:
result = {}
for word_uuid, word in json.load(f).items():
# cost2priorityで変換を行う際にcontext_idが必要となるが、
# 0.12以前の辞書は、context_idがハードコーディングされていたためにユーザー辞書内に保管されていない
# ハードコーディングされていたcontext_idは固有名詞を意味するものなので、固有名詞のcontext_idを補完する
if word.get("context_id") is None:
word["context_id"] = part_of_speech_data[
WordTypes.PROPER_NOUN
].context_id
word["priority"] = cost2priority(word["context_id"], word["cost"])
del word["cost"]
result[str(UUID(word_uuid))] = UserDictWord(**word)
return result
def create_word(
surface: str,
pronunciation: str,
accent_type: int,
word_type: Optional[WordTypes] = None,
priority: Optional[int] = None,
) -> UserDictWord:
if word_type is None:
word_type = WordTypes.PROPER_NOUN
if word_type not in part_of_speech_data.keys():
raise HTTPException(status_code=422, detail="不明な品詞です")
if priority is None:
priority = 5
if not MIN_PRIORITY <= priority <= MAX_PRIORITY:
raise HTTPException(status_code=422, detail="優先度の値が無効です")
pos_detail = part_of_speech_data[word_type]
return UserDictWord(
surface=surface,
context_id=pos_detail.context_id,
priority=priority,
part_of_speech=pos_detail.part_of_speech,
part_of_speech_detail_1=pos_detail.part_of_speech_detail_1,
part_of_speech_detail_2=pos_detail.part_of_speech_detail_2,
part_of_speech_detail_3=pos_detail.part_of_speech_detail_3,
inflectional_type="*",
inflectional_form="*",
stem="*",
yomi=pronunciation,
pronunciation=pronunciation,
accent_type=accent_type,
accent_associative_rule="*",
)
def apply_word(
surface: str,
pronunciation: str,
accent_type: int,
word_type: Optional[WordTypes] = None,
priority: Optional[int] = None,
user_dict_path: Path = user_dict_path,
compiled_dict_path: Path = compiled_dict_path,
) -> str:
word = create_word(
surface=surface,
pronunciation=pronunciation,
accent_type=accent_type,
word_type=word_type,
priority=priority,
)
user_dict = read_dict(user_dict_path=user_dict_path)
word_uuid = str(uuid4())
user_dict[word_uuid] = word
write_to_json(user_dict, user_dict_path)
update_dict(user_dict_path=user_dict_path, compiled_dict_path=compiled_dict_path)
return word_uuid
def rewrite_word(
word_uuid: str,
surface: str,
pronunciation: str,
accent_type: int,
word_type: Optional[WordTypes] = None,
priority: Optional[int] = None,
user_dict_path: Path = user_dict_path,
compiled_dict_path: Path = compiled_dict_path,
):
word = create_word(
surface=surface,
pronunciation=pronunciation,
accent_type=accent_type,
word_type=word_type,
priority=priority,
)
user_dict = read_dict(user_dict_path=user_dict_path)
if word_uuid not in user_dict:
raise HTTPException(status_code=422, detail="UUIDに該当するワードが見つかりませんでした")
user_dict[word_uuid] = word
write_to_json(user_dict, user_dict_path)
update_dict(user_dict_path=user_dict_path, compiled_dict_path=compiled_dict_path)
def delete_word(
word_uuid: str,
user_dict_path: Path = user_dict_path,
compiled_dict_path: Path = compiled_dict_path,
):
user_dict = read_dict(user_dict_path=user_dict_path)
if word_uuid not in user_dict:
raise HTTPException(status_code=422, detail="IDに該当するワードが見つかりませんでした")
del user_dict[word_uuid]
write_to_json(user_dict, user_dict_path)
update_dict(user_dict_path=user_dict_path, compiled_dict_path=compiled_dict_path)
def import_user_dict(
dict_data: Dict[str, UserDictWord],
override: bool = False,
user_dict_path: Path = user_dict_path,
default_dict_path: Path = default_dict_path,
compiled_dict_path: Path = compiled_dict_path,
):
# 念のため型チェックを行う
for word_uuid, word in dict_data.items():
UUID(word_uuid)
assert type(word) == UserDictWord
for pos_detail in part_of_speech_data.values():
if word.context_id == pos_detail.context_id:
assert word.part_of_speech == pos_detail.part_of_speech
assert (
word.part_of_speech_detail_1 == pos_detail.part_of_speech_detail_1
)
assert (
word.part_of_speech_detail_2 == pos_detail.part_of_speech_detail_2
)
assert (
word.part_of_speech_detail_3 == pos_detail.part_of_speech_detail_3
)
assert (
word.accent_associative_rule in pos_detail.accent_associative_rules
)
break
else:
raise ValueError("対応していない品詞です")
old_dict = read_dict(user_dict_path=user_dict_path)
if override:
new_dict = {**old_dict, **dict_data}
else:
new_dict = {**dict_data, **old_dict}
write_to_json(user_dict=new_dict, user_dict_path=user_dict_path)
update_dict(
default_dict_path=default_dict_path,
user_dict_path=user_dict_path,
compiled_dict_path=compiled_dict_path,
)
def search_cost_candidates(context_id: int) -> List[int]:
for value in part_of_speech_data.values():
if value.context_id == context_id:
return value.cost_candidates
raise HTTPException(status_code=422, detail="品詞IDが不正です")
def cost2priority(context_id: int, cost: conint(ge=-32768, le=32767)) -> int:
cost_candidates = search_cost_candidates(context_id)
# cost_candidatesの中にある値で最も近い値を元にpriorityを返す
# 参考: https://qiita.com/Krypf/items/2eada91c37161d17621d
# この関数とpriority2cost関数によって、辞書ファイルのcostを操作しても最も近いpriorityのcostに上書きされる
return MAX_PRIORITY - np.argmin(np.abs(np.array(cost_candidates) - cost))
def priority2cost(
context_id: int, priority: conint(ge=MIN_PRIORITY, le=MAX_PRIORITY)
) -> int:
cost_candidates = search_cost_candidates(context_id)
return cost_candidates[MAX_PRIORITY - priority]
|