Spaces:
Runtime error
Runtime error
from transformers import pipeline | |
from transformers import AutoModelForAudioClassification | |
import gradio as gr | |
import librosa | |
import torch | |
import numpy as np | |
mean, std = -8.278621631819787e-05, 0.08485510250851999 | |
id2label = {0: 'arousal', 1: 'dominance', 2: 'valence'} | |
def classify_audio(audio_file): | |
model = AutoModelForAudioClassification.from_pretrained("3loi/SER-Odyssey-Baseline-WavLM-Multi-Attributes", trust_remote_code=True) | |
sr, raw_wav = audio_file | |
#y = raw_wav.astype(np.float32) | |
#y /= np.max(np.abs(y)) | |
y = raw_wav.astype(np.float32, order='C') / np.iinfo(raw_wav.dtype).max | |
norm_wav = (y - mean) / (std+0.000001) | |
mask = torch.ones(1, len(norm_wav)) | |
wavs = torch.tensor(norm_wav).unsqueeze(0) | |
pred = model(wavs, mask).detach().numpy() | |
output = '' | |
if sr != 16000: | |
output += "{} sampling rate is uncompatible. The model was trained on {} sampleing rate\n".format(sr, 16000) | |
# for i, audio_pred in enumerate(pred): | |
# output[i] = {} | |
for att_i, att_val in enumerate(pred[0]): | |
output += "{}: \t{:0.4f}\n".format(id2label[att_i], att_val) | |
return output | |
def main(): | |
iface = gr.Interface(fn=classify_audio, inputs=gr.Audio(sources=["upload", "microphone"], label="Audio file"), | |
outputs=gr.Text(), title="Speech Emotion Recognition App", | |
description="Upload an audio file and hit the 'Submit'\ | |
button") | |
iface.launch() | |
if __name__ == '__main__': | |
main() | |