Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,17 +13,17 @@ def inference(img):
|
|
13 |
wpercent = (basewidth / float(img.size[0]))
|
14 |
hsize = int((float(img.size[1]) * float(wpercent)))
|
15 |
img = img.resize((basewidth, hsize), Image.ANTIALIAS)
|
16 |
-
img.save("test/1.
|
17 |
os.system(
|
18 |
-
'python
|
19 |
-
return 'result/
|
20 |
|
21 |
|
22 |
title = "Compound Multi-branch Feature Fusion (Deraindrop)"
|
23 |
description = "Gradio demo for CMFNet. CMFNet achieves state-of-the-art performance on six tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. See the paper and project page for detailed results below. Here, we provide a demo for real-world image SR.To use it, simply upload your image, or click one of the examples to load them."
|
24 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.10257' target='_blank'>SwinIR: Image Restoration Using Swin Transformer</a> | <a href='https://github.com/JingyunLiang/SwinIR' target='_blank'>Github Repo</a></p>"
|
25 |
|
26 |
-
examples = [['
|
27 |
gr.Interface(
|
28 |
inference,
|
29 |
[gr.inputs.Image(type="pil", label="Input")],
|
|
|
13 |
wpercent = (basewidth / float(img.size[0]))
|
14 |
hsize = int((float(img.size[1]) * float(wpercent)))
|
15 |
img = img.resize((basewidth, hsize), Image.ANTIALIAS)
|
16 |
+
img.save("test/1.png", "PNG")
|
17 |
os.system(
|
18 |
+
'python main_test_CMFNet.py --weights experiments/pretrained_models/deraindrop_model.pth')
|
19 |
+
return 'result/1.png'
|
20 |
|
21 |
|
22 |
title = "Compound Multi-branch Feature Fusion (Deraindrop)"
|
23 |
description = "Gradio demo for CMFNet. CMFNet achieves state-of-the-art performance on six tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. See the paper and project page for detailed results below. Here, we provide a demo for real-world image SR.To use it, simply upload your image, or click one of the examples to load them."
|
24 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.10257' target='_blank'>SwinIR: Image Restoration Using Swin Transformer</a> | <a href='https://github.com/JingyunLiang/SwinIR' target='_blank'>Github Repo</a></p>"
|
25 |
|
26 |
+
examples = [['Rain.png']]
|
27 |
gr.Interface(
|
28 |
inference,
|
29 |
[gr.inputs.Image(type="pil", label="Input")],
|