Spaces:
Runtime error
Runtime error
import cog | |
import tempfile | |
from pathlib import Path | |
import argparse | |
import shutil | |
import os | |
import glob | |
import torch | |
from skimage import img_as_ubyte | |
from PIL import Image | |
from model.SRMNet import SRMNet | |
from main_test_SRMNet import save_img, setup | |
import torchvision.transforms.functional as TF | |
import torch.nn.functional as F | |
class Predictor(cog.Predictor): | |
def setup(self): | |
model_dir = 'experiments/pretrained_models/AWGN_denoising_SRMNet.pth' | |
parser = argparse.ArgumentParser(description='Demo Image Denoising') | |
parser.add_argument('--input_dir', default='./test/', type=str, help='Input images') | |
parser.add_argument('--result_dir', default='./result/', type=str, help='Directory for results') | |
parser.add_argument('--weights', | |
default='./checkpoints/SRMNet_real_denoise/models/model_bestPSNR.pth', type=str, | |
help='Path to weights') | |
self.args = parser.parse_args() | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
def predict(self, image): | |
# set input folder | |
input_dir = 'input_cog_temp' | |
os.makedirs(input_dir, exist_ok=True) | |
input_path = os.path.join(input_dir, os.path.basename(image)) | |
shutil.copy(str(image), input_path) | |
# Load corresponding models architecture and weights | |
model = SRMNet() | |
model.eval() | |
model = model.to(self.device) | |
folder, save_dir = setup(self.args) | |
os.makedirs(save_dir, exist_ok=True) | |
out_path = Path(tempfile.mkdtemp()) / "out.png" | |
mul = 16 | |
for file_ in sorted(glob.glob(os.path.join(folder, '*.PNG'))): | |
img = Image.open(file_).convert('RGB') | |
input_ = TF.to_tensor(img).unsqueeze(0).cuda() | |
# Pad the input if not_multiple_of 8 | |
h, w = input_.shape[2], input_.shape[3] | |
H, W = ((h + mul) // mul) * mul, ((w + mul) // mul) * mul | |
padh = H - h if h % mul != 0 else 0 | |
padw = W - w if w % mul != 0 else 0 | |
input_ = F.pad(input_, (0, padw, 0, padh), 'reflect') | |
with torch.no_grad(): | |
restored = model(input_) | |
restored = torch.clamp(restored, 0, 1) | |
restored = restored[:, :, :h, :w] | |
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy() | |
restored = img_as_ubyte(restored[0]) | |
save_img(str(out_path), restored) | |
clean_folder(input_dir) | |
return out_path | |
def clean_folder(folder): | |
for filename in os.listdir(folder): | |
file_path = os.path.join(folder, filename) | |
try: | |
if os.path.isfile(file_path) or os.path.islink(file_path): | |
os.unlink(file_path) | |
elif os.path.isdir(file_path): | |
shutil.rmtree(file_path) | |
except Exception as e: | |
print('Failed to delete %s. Reason: %s' % (file_path, e)) | |