Spaces:
Sleeping
Sleeping
File size: 8,303 Bytes
74ffc36 dbf2aa5 74ffc36 dbf2aa5 74ffc36 75b1a69 74ffc36 75b1a69 74ffc36 dbf2aa5 c6e8ef5 74ffc36 c6e8ef5 74ffc36 2569b24 74ffc36 c6e8ef5 74ffc36 2569b24 74ffc36 dbf2aa5 74ffc36 dbf2aa5 74ffc36 dbf2aa5 74ffc36 dbf2aa5 74ffc36 dbf2aa5 74ffc36 c6e8ef5 75b1a69 74ffc36 dbf2aa5 74ffc36 dbf2aa5 74ffc36 dbf2aa5 74ffc36 dbf2aa5 74ffc36 7977c5d 74ffc36 7977c5d 74ffc36 dbf2aa5 74ffc36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
import gradio as gr
import logging
from huggingface_hub import login
import os
from threading import Thread
# Status: Breaks during generation
logging.basicConfig(level=logging.DEBUG)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
login(token=HF_TOKEN)
models_available = [
"NousResearch/Meta-Llama-3.1-8B-Instruct",
"mistralai/Mistral-7B-Instruct-v0.3",
]
tokenizer_a, model_a = None, None
tokenizer_b, model_b = None, None
torch_dtype = torch.bfloat16
def apply_chat_template(messages, add_generation_prompt=False):
"""
Function to apply the chat template manually for each message in a list.
messages: List of dictionaries, each containing a 'role' and 'content'.
"""
pharia_template = """<|begin_of_text|>"""
role_map = {
"system": "<|start_header_id|>system<|end_header_id|>\n",
"user": "<|start_header_id|>user<|end_header_id|>\n",
"assistant": "<|start_header_id|>assistant<|end_header_id|>\n",
}
# Iterate through the messages and apply the template for each role
for message in messages:
role = message["role"]
content = message["content"]
pharia_template += role_map.get(role, "") + content + "<|eot_id|>\n"
# Add the assistant generation prompt if required
if add_generation_prompt:
pharia_template += "<|start_header_id|>assistant<|end_header_id|>\n"
return pharia_template
def load_model_a(model_id):
global tokenizer_a, model_a, model_id_a
model_id_a = model_id # need to access model_id with tokenizer
tokenizer_a = AutoTokenizer.from_pretrained(model_id)
logging.debug(f"***** model A eos_token: {tokenizer_a.eos_token}")
model_a = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
device_map="auto",
trust_remote_code=True,
).eval()
return gr.update(label=model_id)
def load_model_b(model_id):
global tokenizer_b, model_b, model_id_b
model_id_b = model_id
tokenizer_b = AutoTokenizer.from_pretrained(model_id)
logging.debug(f"***** model B eos_token: {tokenizer_b.eos_token}")
model_b = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
device_map="auto",
trust_remote_code=True,
).eval()
model_b.tie_weights()
return gr.update(label=model_id)
@spaces.GPU()
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
text_streamer_a = TextIteratorStreamer(tokenizer_a, skip_prompt=True)
text_streamer_b = TextIteratorStreamer(tokenizer_b, skip_prompt=True)
system_prompt_list = [{"role": "system", "content": system_prompt}] if system_prompt else []
input_text_list = [{"role": "user", "content": input_text}]
chat_history_a = []
for user, assistant in chatbot_a:
chat_history_a.append({"role": "user", "content": user})
chat_history_a.append({"role": "assistant", "content": assistant})
chat_history_b = []
for user, assistant in chatbot_b:
chat_history_b.append({"role": "user", "content": user})
chat_history_b.append({"role": "assistant", "content": assistant})
new_messages_a = system_prompt_list + chat_history_a + input_text_list
new_messages_b = system_prompt_list + chat_history_b + input_text_list
input_ids_a = tokenizer_a.apply_chat_template(
new_messages_a,
add_generation_prompt=True,
return_tensors="pt"
).to(model_a.device)
input_ids_b = tokenizer_b.apply_chat_template(
new_messages_b,
add_generation_prompt=True,
return_tensors="pt"
).to(model_b.device)
generation_kwargs_a = dict(
input_ids=input_ids_a,
streamer=text_streamer_a,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer_a.eos_token_id,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
generation_kwargs_b = dict(
input_ids=input_ids_b,
streamer=text_streamer_b,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer_b.eos_token_id,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
thread_a = Thread(target=model_a.generate, kwargs=generation_kwargs_a)
thread_b = Thread(target=model_b.generate, kwargs=generation_kwargs_b)
thread_a.start()
thread_b.start()
chatbot_a.append([input_text, ""])
chatbot_b.append([input_text, ""])
finished_a = False
finished_b = False
while not (finished_a and finished_b):
if not finished_a:
try:
text_a = next(text_streamer_a)
if tokenizer_a.eos_token in text_a:
eot_location = text_a.find(tokenizer_a.eos_token)
text_a = text_a[:eot_location]
finished_a = True
chatbot_a[-1][-1] += text_a
yield chatbot_a, chatbot_b
except StopIteration:
finished_a = True
if not finished_b:
try:
text_b = next(text_streamer_b)
if tokenizer_b.eos_token in text_b:
eot_location = text_b.find(tokenizer_b.eos_token)
text_b = text_b[:eot_location]
finished_b = True
chatbot_b[-1][-1] += text_b
yield chatbot_a, chatbot_b
except StopIteration:
finished_b = True
return chatbot_a, chatbot_b
def clear():
return [], []
arena_notes = """## Important Notes:
- Sometimes an error may occur when generating the response, in this case, please try again.
"""
with gr.Blocks() as demo:
with gr.Column():
gr.HTML("<center><h1>🤖le Royale</h1></center>")
gr.Markdown(arena_notes)
system_prompt = gr.Textbox(lines=1, label="System Prompt", value="You are a helpful chatbot. Write a Nike style ad headline about the shame of being second best", show_copy_button=True)
with gr.Row(variant="panel"):
with gr.Column():
model_dropdown_a = gr.Dropdown(label="Model A", choices=models_available, value=None)
chatbot_a = gr.Chatbot(label="Model A", rtl=True, likeable=True, show_copy_button=True, height=500)
with gr.Column():
model_dropdown_b = gr.Dropdown(label="Model B", choices=models_available, value=None)
chatbot_b = gr.Chatbot(label="Model B", rtl=True, likeable=True, show_copy_button=True, height=500)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
submit_btn = gr.Button(value="Generate", variant="primary")
clear_btn = gr.Button(value="Clear", variant="secondary")
input_text = gr.Textbox(lines=1, label="Output", value="", scale=3, show_copy_button=True)
with gr.Accordion(label="Generation Configurations", open=False):
max_new_tokens = gr.Slider(minimum=128, maximum=4096, value=2048, label="Max New Tokens", step=128)
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature", step=0.01)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top-p", step=0.01)
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
model_dropdown_a.change(load_model_a, inputs=[model_dropdown_a], outputs=[chatbot_a])
model_dropdown_b.change(load_model_b, inputs=[model_dropdown_b], outputs=[chatbot_b])
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
if __name__ == "__main__":
demo.queue().launch() |