Spaces:
Sleeping
Sleeping
File size: 11,343 Bytes
74ffc36 dbf2aa5 74ffc36 b6c4ccb dbf2aa5 74ffc36 b714af0 75b1a69 74ffc36 b6c4ccb 74ffc36 e527982 827f420 e527982 b714af0 b0caeb4 b714af0 b0caeb4 b714af0 5d9e699 b235bfd ee6ec78 5d9e699 b0caeb4 5d9e699 b0caeb4 5d9e699 2509698 b0caeb4 5d9e699 b0caeb4 5d9e699 b714af0 5d9e699 dbf2aa5 b714af0 827f420 c6e8ef5 b714af0 c6e8ef5 dbf2aa5 74ffc36 b6c4ccb b714af0 b6c4ccb ee6ec78 b6c4ccb 74ffc36 ee6ec78 74ffc36 ee6ec78 74ffc36 b0859e8 81120ee b0caeb4 81120ee b0caeb4 81120ee b0caeb4 dbacf8c a3d3acb 74ffc36 31ba0a1 b714af0 2509698 827f420 31ba0a1 0cc2e26 31ba0a1 2509698 31ba0a1 2509698 31ba0a1 e527982 2509698 31ba0a1 dbf2aa5 74ffc36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
import gradio as gr
import logging
from huggingface_hub import login
import os
import traceback
from threading import Thread
from random import shuffle, choice
logging.basicConfig(level=logging.DEBUG)
SPACER = '\n' + '*' * 40 + '\n'
HF_TOKEN = os.environ.get("HF_TOKEN", None)
login(token=HF_TOKEN)
system_prompts = {
"English": "You are a helpful chatbot that answers user input in a concise and witty way.",
"German": "Du bist ein hilfreicher Chatbot, der Usereingaben knapp und originell beantwortet.",
"French": "Tu es un chatbot utile qui répond aux questions des utilisateurs de manière concise et originale.",
"Spanish": "Eres un chatbot servicial que responde a las entradas de los usuarios de forma concisa y original."
}
htmL_info = "<center><h1>Pharia Battle Royale</h1><p>Let the games begin: Try a prompt in a language you like. Set the parameters and vote for the best answers. After casting your vote, the bots reveal their identity.</p></center>"
model_info = [{"id": "Aleph-Alpha/Pharia-1-LLM-7B-control-hf",
"name": "Pharia 1 LLM 7B control hf"}]
challenger_models = [{"id": "NousResearch/Meta-Llama-3.1-8B-Instruct",
"name": "Meta Llama 3.1 8B Instruct"},
{"id": "mistralai/Mistral-7B-Instruct-v0.3",
"name": "Mistral 7B Instruct v0.3"}]
model_info.append(choice(challenger_models))
shuffle(model_info)
logging.debug(f'models shuffled. model[0]: {model_info[0]['name']}, model[1]: {model_info[1]['name']}')
device = "cuda"
try:
tokenizer_a = AutoTokenizer.from_pretrained(model_info[0]['id'])
model_a = AutoModelForCausalLM.from_pretrained(
model_info[0]['id'],
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
tokenizer_b = AutoTokenizer.from_pretrained(model_info[1]['id'])
model_b = AutoModelForCausalLM.from_pretrained(
model_info[1]['id'],
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
def apply_pharia_template(messages, add_generation_prompt=False):
"""Chat template not defined in Pharia model configs.
Adds chat template for Pharia. Expects a list of messages.
add_generation_prompt:bool extends tmplate for generation.
"""
pharia_template = """<|begin_of_text|>"""
role_map = {
"system": "<|start_header_id|>system<|end_header_id|>\n",
"user": "<|start_header_id|>user<|end_header_id|>\n",
"assistant": "<|start_header_id|>assistant<|end_header_id|>\n",
}
for message in messages:
role = message["role"]
content = message["content"]
pharia_template += role_map.get(role, "") + content + "<|eot_id|>\n"
if add_generation_prompt:
pharia_template += "<|start_header_id|>assistant<|end_header_id|>\n"
return pharia_template
@spaces.GPU()
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
try:
text_streamer_a = TextIteratorStreamer(tokenizer_a, skip_prompt=True)
text_streamer_b = TextIteratorStreamer(tokenizer_b, skip_prompt=True)
system_prompt_list = [{"role": "system", "content": system_prompt}] if system_prompt else []
input_text_list = [{"role": "user", "content": input_text}]
chat_history_a = []
for user, assistant in chatbot_a:
chat_history_a.append({"role": "user", "content": user})
chat_history_a.append({"role": "assistant", "content": assistant})
chat_history_b = []
for user, assistant in chatbot_b:
chat_history_b.append({"role": "user", "content": user})
chat_history_b.append({"role": "assistant", "content": assistant})
new_messages_a = system_prompt_list + chat_history_a + input_text_list
new_messages_b = system_prompt_list + chat_history_b + input_text_list
if "Pharia" in model_info[0]['id']:
formatted_conversation = apply_pharia_template(messages=new_messages_a, add_generation_prompt=True)
input_ids_a = tokenizer_a(formatted_conversation, return_tensors="pt").to(device)
else:
input_ids_a = tokenizer_a.apply_chat_template(
new_messages_a,
add_generation_prompt=True,
dtype=torch.float16,
return_tensors="pt"
).to(device)
if "Pharia" in model_info[1]['id']:
formatted_conversation = apply_pharia_template(messages=new_messages_a, add_generation_prompt=True)
input_ids_a = tokenizer_a(formatted_conversation, return_tensors="pt").to(device)
else:
input_ids_b = tokenizer_b.apply_chat_template(
new_messages_b,
add_generation_prompt=True,
dtype=torch.float16,
return_tensors="pt"
).to(device)
generation_kwargs_a = dict(
input_ids=input_ids_a,
streamer=text_streamer_a,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer_a.eos_token_id,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
generation_kwargs_b = dict(
input_ids=input_ids_b,
streamer=text_streamer_b,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer_b.eos_token_id,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
thread_a = Thread(target=model_a.generate, kwargs=generation_kwargs_a)
thread_b = Thread(target=model_b.generate, kwargs=generation_kwargs_b)
thread_a.start()
thread_b.start()
chatbot_a.append([input_text, ""])
chatbot_b.append([input_text, ""])
finished_a = False
finished_b = False
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
while not (finished_a and finished_b):
if not finished_a:
try:
text_a = next(text_streamer_a)
if tokenizer_a.eos_token in text_a:
eot_location = text_a.find(tokenizer_a.eos_token)
text_a = text_a[:eot_location]
finished_a = True
chatbot_a[-1][-1] += text_a
yield chatbot_a, chatbot_b
except StopIteration:
finished_a = True
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
if not finished_b:
try:
text_b = next(text_streamer_b)
if tokenizer_b.eos_token in text_b:
eot_location = text_b.find(tokenizer_b.eos_token)
text_b = text_b[:eot_location]
finished_b = True
chatbot_b[-1][-1] += text_b
yield chatbot_a, chatbot_b
except StopIteration:
finished_b = True
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
return chatbot_a, chatbot_b
def clear():
return [], []
def reveal_bot(selection, chatbot_a, chatbot_b):
if selection == "Bot A kicks ass!":
chatbot_a.append(["🏆", f"Thanks, man. I am {model_info[0]['name']}"])
chatbot_b.append(["💩", f"Pffff … I am {model_info[1]['name']}"])
elif selection == "Bot B crushes it!":
chatbot_a.append(["🤡", f"Rigged … I am {model_info[0]['name']}"])
chatbot_b.append(["🥇", f"Well deserved! I am {model_info[1]['name']}"])
else:
chatbot_a.append(["🤝", f"Lame … I am {model_info[0]['name']}"])
chatbot_b.append(["🤝", f"Dunno. I am {model_info[1]['name']}"])
return chatbot_a, chatbot_b
with gr.Blocks() as demo:
try:
with gr.Column():
gr.HTML(htmL_info)
with gr.Row(variant="compact"):
with gr.Column(scale=0):
language_dropdown = gr.Dropdown(
choices=["English", "German", "French", "Spanish"],
label="Select Language for System Prompt",
value="English"
)
with gr.Column():
system_prompt = gr.Textbox(
lines=1,
label="System Prompt",
value=system_prompts["English"],
show_copy_button=True
)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
submit_btn = gr.Button(value="Generate", variant="primary")
clear_btn = gr.Button(value="Clear", variant="secondary")
input_text = gr.Textbox(lines=1, label="Prompt", value="Write a Nike style ad headline about the shame of being second best.", scale=3, show_copy_button=True)
with gr.Row(variant="panel"):
with gr.Column():
chatbot_a = gr.Chatbot(label="Model A", show_copy_button=True, height=500)
with gr.Column():
chatbot_b = gr.Chatbot(label="Model B", show_copy_button=True, height=500)
with gr.Row(variant="panel"):
better_bot = gr.Radio(["Bot A kicks ass!", "Bot B crushes it!", "It's a draw."], label="Rate the output!")
with gr.Accordion(label="Generation Configurations", open=False):
max_new_tokens = gr.Slider(minimum=128, maximum=4096, value=512, label="Max new tokens", step=128)
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature", step=0.01)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top_p", step=0.01)
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
language_dropdown.change(
lambda lang: system_prompts[lang],
inputs=[language_dropdown],
outputs=[system_prompt]
)
better_bot.select(reveal_bot, inputs=[better_bot, chatbot_a, chatbot_b], outputs=[chatbot_a, chatbot_b])
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
except Exception as e:
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
if __name__ == "__main__":
demo.queue().launch() |