File size: 11,343 Bytes
74ffc36
 
 
dbf2aa5
74ffc36
 
 
b6c4ccb
dbf2aa5
74ffc36
b714af0
75b1a69
74ffc36
 
b6c4ccb
 
74ffc36
 
 
e527982
827f420
 
 
 
e527982
 
b714af0
 
 
 
 
 
b0caeb4
 
 
b714af0
 
b0caeb4
b714af0
5d9e699
b235bfd
ee6ec78
5d9e699
b0caeb4
5d9e699
b0caeb4
5d9e699
 
 
 
2509698
b0caeb4
5d9e699
b0caeb4
5d9e699
 
 
 
b714af0
5d9e699
 
 
dbf2aa5
b714af0
 
 
827f420
c6e8ef5
b714af0
c6e8ef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbf2aa5
74ffc36
 
b6c4ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b714af0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6c4ccb
 
 
 
 
 
 
 
 
 
 
ee6ec78
b6c4ccb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74ffc36
 
 
 
 
 
 
 
 
 
 
 
 
ee6ec78
 
74ffc36
 
 
 
 
 
 
 
 
 
 
 
ee6ec78
 
74ffc36
 
 
 
 
 
b0859e8
81120ee
b0caeb4
 
81120ee
b0caeb4
 
81120ee
b0caeb4
 
dbacf8c
a3d3acb
74ffc36
31ba0a1
 
b714af0
2509698
 
827f420
 
 
 
 
 
 
 
 
 
 
 
31ba0a1
 
 
 
 
 
 
 
 
 
 
0cc2e26
31ba0a1
2509698
31ba0a1
2509698
31ba0a1
 
e527982
 
 
 
 
 
 
2509698
31ba0a1
 
 
 
 
dbf2aa5
 
74ffc36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
import gradio as gr
import logging
from huggingface_hub import login
import os
import traceback

from threading import Thread
from random import shuffle, choice

logging.basicConfig(level=logging.DEBUG)

SPACER = '\n' + '*' * 40 + '\n'

HF_TOKEN = os.environ.get("HF_TOKEN", None)
login(token=HF_TOKEN)

system_prompts = {
    "English": "You are a helpful chatbot that answers user input in a concise and witty way.",
    "German": "Du bist ein hilfreicher Chatbot, der Usereingaben knapp und originell beantwortet.",
    "French": "Tu es un chatbot utile qui répond aux questions des utilisateurs de manière concise et originale.",
    "Spanish": "Eres un chatbot servicial que responde a las entradas de los usuarios de forma concisa y original."
}

htmL_info = "<center><h1>Pharia Battle Royale</h1><p>Let the games begin: Try a prompt in a language you like. Set the parameters and vote for the best answers. After casting your vote, the bots reveal their identity.</p></center>"

model_info = [{"id": "Aleph-Alpha/Pharia-1-LLM-7B-control-hf",
                "name": "Pharia 1 LLM 7B control hf"}]

challenger_models = [{"id": "NousResearch/Meta-Llama-3.1-8B-Instruct",
                    "name": "Meta Llama 3.1 8B Instruct"},
                    {"id": "mistralai/Mistral-7B-Instruct-v0.3",
                    "name": "Mistral 7B Instruct v0.3"}]

model_info.append(choice(challenger_models))
shuffle(model_info)
logging.debug(f'models shuffled. model[0]: {model_info[0]['name']}, model[1]: {model_info[1]['name']}')

device = "cuda" 

try: 
    tokenizer_a = AutoTokenizer.from_pretrained(model_info[0]['id'])
    model_a = AutoModelForCausalLM.from_pretrained(
        model_info[0]['id'],
        torch_dtype=torch.float16,
        device_map="auto",
        trust_remote_code=True,
    )

    tokenizer_b = AutoTokenizer.from_pretrained(model_info[1]['id'])
    model_b = AutoModelForCausalLM.from_pretrained(
        model_info[1]['id'],
        torch_dtype=torch.float16,
        device_map="auto",
        trust_remote_code=True,
    )

except Exception as e:
    logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')


def apply_pharia_template(messages, add_generation_prompt=False):
    """Chat template not defined in Pharia model configs. 
    Adds chat template for Pharia. Expects a list of messages. 
    add_generation_prompt:bool extends tmplate for generation.
    """

    pharia_template = """<|begin_of_text|>"""
    role_map = {
        "system": "<|start_header_id|>system<|end_header_id|>\n",
        "user": "<|start_header_id|>user<|end_header_id|>\n",
        "assistant": "<|start_header_id|>assistant<|end_header_id|>\n",
    }
    
    for message in messages:
        role = message["role"]
        content = message["content"]
        pharia_template += role_map.get(role, "") + content + "<|eot_id|>\n"
    
    if add_generation_prompt:
        pharia_template += "<|start_header_id|>assistant<|end_header_id|>\n"
    
    return pharia_template


@spaces.GPU()
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
    try: 
        text_streamer_a = TextIteratorStreamer(tokenizer_a, skip_prompt=True)
        text_streamer_b = TextIteratorStreamer(tokenizer_b, skip_prompt=True)

        system_prompt_list = [{"role": "system", "content": system_prompt}] if system_prompt else []
        input_text_list = [{"role": "user", "content": input_text}]

        chat_history_a = []
        for user, assistant in chatbot_a:
            chat_history_a.append({"role": "user", "content": user})
            chat_history_a.append({"role": "assistant", "content": assistant})

        chat_history_b = []
        for user, assistant in chatbot_b:
            chat_history_b.append({"role": "user", "content": user})
            chat_history_b.append({"role": "assistant", "content": assistant})
        
        new_messages_a = system_prompt_list + chat_history_a + input_text_list
        new_messages_b = system_prompt_list + chat_history_b + input_text_list

        if "Pharia" in model_info[0]['id']:
            formatted_conversation = apply_pharia_template(messages=new_messages_a, add_generation_prompt=True)
            input_ids_a = tokenizer_a(formatted_conversation, return_tensors="pt").to(device)

        else: 
            input_ids_a = tokenizer_a.apply_chat_template(
                new_messages_a,
                add_generation_prompt=True,
                dtype=torch.float16,
                return_tensors="pt"
            ).to(device)

        if "Pharia" in model_info[1]['id']:
            formatted_conversation = apply_pharia_template(messages=new_messages_a, add_generation_prompt=True)
            input_ids_a = tokenizer_a(formatted_conversation, return_tensors="pt").to(device)

        else:
            input_ids_b = tokenizer_b.apply_chat_template(
                new_messages_b,
                add_generation_prompt=True,
                dtype=torch.float16,
                return_tensors="pt"
            ).to(device)

        generation_kwargs_a = dict(
            input_ids=input_ids_a,
            streamer=text_streamer_a,
            max_new_tokens=max_new_tokens,
            pad_token_id=tokenizer_a.eos_token_id,
            do_sample=True,
            temperature=temperature,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
        )

        generation_kwargs_b = dict(
            input_ids=input_ids_b,
            streamer=text_streamer_b,
            max_new_tokens=max_new_tokens,
            pad_token_id=tokenizer_b.eos_token_id,
            do_sample=True,
            temperature=temperature,
            top_p=top_p,
            repetition_penalty=repetition_penalty,
        )

        thread_a = Thread(target=model_a.generate, kwargs=generation_kwargs_a)
        thread_b = Thread(target=model_b.generate, kwargs=generation_kwargs_b)

        thread_a.start()
        thread_b.start()

        chatbot_a.append([input_text, ""])
        chatbot_b.append([input_text, ""])

        finished_a = False
        finished_b = False
    except Exception as e:
        logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')

    while not (finished_a and finished_b):
        if not finished_a:
            try:
                text_a = next(text_streamer_a)
                if tokenizer_a.eos_token in text_a:
                    eot_location = text_a.find(tokenizer_a.eos_token)
                    text_a = text_a[:eot_location]
                    finished_a = True
                chatbot_a[-1][-1] += text_a
                yield chatbot_a, chatbot_b
            except StopIteration:
                finished_a = True
            except Exception as e:
                logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')

        if not finished_b:
            try:
                text_b = next(text_streamer_b)
                if tokenizer_b.eos_token in text_b:
                    eot_location = text_b.find(tokenizer_b.eos_token)
                    text_b = text_b[:eot_location]
                    finished_b = True
                chatbot_b[-1][-1] += text_b
                yield chatbot_a, chatbot_b
            except StopIteration:
                finished_b = True
            except Exception as e:
                logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')

    return chatbot_a, chatbot_b

def clear():
    return [], []

def reveal_bot(selection, chatbot_a, chatbot_b):
    if selection == "Bot A kicks ass!":
        chatbot_a.append(["🏆", f"Thanks, man. I am {model_info[0]['name']}"])
        chatbot_b.append(["💩", f"Pffff … I am {model_info[1]['name']}"])
    elif selection == "Bot B crushes it!":
        chatbot_a.append(["🤡", f"Rigged … I am {model_info[0]['name']}"])
        chatbot_b.append(["🥇", f"Well deserved! I am {model_info[1]['name']}"])  
    else:
        chatbot_a.append(["🤝", f"Lame … I am {model_info[0]['name']}"])
        chatbot_b.append(["🤝", f"Dunno. I am {model_info[1]['name']}"])            
    return chatbot_a, chatbot_b

with gr.Blocks() as demo:
    try:
        with gr.Column():
            gr.HTML(htmL_info)
            with gr.Row(variant="compact"):
                with gr.Column(scale=0):
                    language_dropdown = gr.Dropdown(
                        choices=["English", "German", "French", "Spanish"], 
                        label="Select Language for System Prompt",
                        value="English"
                    )
                with gr.Column():
                    system_prompt = gr.Textbox(
                        lines=1, 
                        label="System Prompt", 
                        value=system_prompts["English"], 
                        show_copy_button=True
                    )
            with gr.Row(variant="panel"):
                with gr.Column(scale=1):
                    submit_btn = gr.Button(value="Generate", variant="primary")
                    clear_btn = gr.Button(value="Clear", variant="secondary")
                input_text = gr.Textbox(lines=1, label="Prompt", value="Write a Nike style ad headline about the shame of being second best.", scale=3, show_copy_button=True)
            with gr.Row(variant="panel"):
                with gr.Column():
                    chatbot_a = gr.Chatbot(label="Model A", show_copy_button=True, height=500)
                with gr.Column():
                    chatbot_b = gr.Chatbot(label="Model B", show_copy_button=True, height=500)
            with gr.Row(variant="panel"):
                    better_bot = gr.Radio(["Bot A kicks ass!", "Bot B crushes it!", "It's a draw."], label="Rate the output!")
            with gr.Accordion(label="Generation Configurations", open=False):
                max_new_tokens = gr.Slider(minimum=128, maximum=4096, value=512, label="Max new tokens", step=128)
                temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature", step=0.01)
                top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top_p", step=0.01)
                repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)


        language_dropdown.change(
            lambda lang: system_prompts[lang], 
            inputs=[language_dropdown], 
            outputs=[system_prompt]
        )

        better_bot.select(reveal_bot, inputs=[better_bot, chatbot_a, chatbot_b], outputs=[chatbot_a, chatbot_b]) 
        input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
        submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
        clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
    except Exception as e:
        logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')

if __name__ == "__main__":
    demo.queue().launch()