bot-royale / app.py
5to9's picture
0.5 tweaking output, ltr
7977c5d
raw
history blame
8.23 kB
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
import gradio as gr
import logging
from huggingface_hub import login
import os
from threading import Thread
import subprocess
subprocess.run('pip install -U flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
logging.basicConfig(level=logging.DEBUG)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
login(token=HF_TOKEN)
models_available = [
"Aleph-Alpha/Pharia-1-LLM-7B-control-hf",
"mistralai/Mistral-7B-Instruct-v0.3",
]
tokenizer_a, model_a = None, None
tokenizer_b, model_b = None, None
torch_dtype = torch.bfloat16
attn_implementation = "flash_attention_2"
def load_model_a(model_id):
global tokenizer_a, model_a
tokenizer_a = AutoTokenizer.from_pretrained(model_id)
logging.debug(f"model A: {tokenizer_a.eos_token}")
try:
model_a = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
device_map="auto",
attn_implementation=attn_implementation,
trust_remote_code=True,
).eval()
except Exception as e:
logging.debug(f"Using default attention implementation in {model_id}")
logging.debug(f"Error: {e}")
model_a = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
device_map="auto",
trust_remote_code=True,
).eval()
model_a.tie_weights()
return gr.update(label=model_id)
def load_model_b(model_id):
global tokenizer_b, model_b
tokenizer_b = AutoTokenizer.from_pretrained(model_id)
logging.debug(f"model B: {tokenizer_b.eos_token}")
try:
model_b = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
device_map="auto",
attn_implementation=attn_implementation,
trust_remote_code=True,
).eval()
except Exception as e:
logging.debug(f"Error: {e}")
logging.debug(f"Using default attention implementation in {model_id}")
model_b = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch_dtype,
device_map="auto",
trust_remote_code=True,
).eval()
model_b.tie_weights()
return gr.update(label=model_id)
@spaces.GPU()
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
text_streamer_a = TextIteratorStreamer(tokenizer_a, skip_prompt=True)
text_streamer_b = TextIteratorStreamer(tokenizer_b, skip_prompt=True)
system_prompt_list = [{"role": "system", "content": system_prompt}] if system_prompt else []
input_text_list = [{"role": "user", "content": input_text}]
chat_history_a = []
for user, assistant in chatbot_a:
chat_history_a.append({"role": "user", "content": user})
chat_history_a.append({"role": "assistant", "content": assistant})
chat_history_b = []
for user, assistant in chatbot_b:
chat_history_b.append({"role": "user", "content": user})
chat_history_b.append({"role": "assistant", "content": assistant})
base_messages = system_prompt_list + chat_history_a + input_text_list
new_messages = system_prompt_list + chat_history_b + input_text_list
input_ids_a = tokenizer_a.apply_chat_template(
base_messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model_a.device)
input_ids_b = tokenizer_b.apply_chat_template(
new_messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model_b.device)
generation_kwargs_a = dict(
input_ids=input_ids_a,
streamer=text_streamer_a,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer_a.eos_token_id,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
generation_kwargs_b = dict(
input_ids=input_ids_b,
streamer=text_streamer_b,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer_b.eos_token_id,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
thread_a = Thread(target=model_a.generate, kwargs=generation_kwargs_a)
thread_b = Thread(target=model_b.generate, kwargs=generation_kwargs_b)
thread_a.start()
thread_b.start()
chatbot_a.append([input_text, ""])
chatbot_b.append([input_text, ""])
finished_a = False
finished_b = False
while not (finished_a and finished_b):
if not finished_a:
try:
text_a = next(text_streamer_a)
if tokenizer_a.eos_token in text_a:
eot_location = text_a.find(tokenizer_a.eos_token)
text_a = text_a[:eot_location]
finished_a = True
chatbot_a[-1][-1] += text_a
yield chatbot_a, chatbot_b
except StopIteration:
finished_a = True
if not finished_b:
try:
text_b = next(text_streamer_b)
if tokenizer_b.eos_token in text_b:
eot_location = text_b.find(tokenizer_b.eos_token)
text_b = text_b[:eot_location]
finished_b = True
chatbot_b[-1][-1] += text_b
yield chatbot_a, chatbot_b
except StopIteration:
finished_b = True
return chatbot_a, chatbot_b
def clear():
return [], []
arena_notes = """## Important Notes:
- Sometimes an error may occur when generating the response, in this case, please try again.
"""
with gr.Blocks() as demo:
with gr.Column():
gr.HTML("<center><h1>🤖le Royale</h1></center>")
gr.Markdown(arena_notes)
system_prompt = gr.Textbox(lines=1, label="System Prompt", value="You are a helpful chatbot. Write a Nike style ad headline about the shame of being second best", show_copy_button=True)
with gr.Row(variant="panel"):
with gr.Column():
model_dropdown_a = gr.Dropdown(label="Model A", choices=models_available, value=None)
chatbot_a = gr.Chatbot(label="Model A", rtl=True, likeable=True, show_copy_button=True, height=500)
with gr.Column():
model_dropdown_b = gr.Dropdown(label="Model B", choices=models_available, value=None)
chatbot_b = gr.Chatbot(label="Model B", rtl=True, likeable=True, show_copy_button=True, height=500)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
submit_btn = gr.Button(value="Generate", variant="primary")
clear_btn = gr.Button(value="Clear", variant="secondary")
input_text = gr.Textbox(lines=1, label="Output", value="", scale=3, show_copy_button=True)
with gr.Accordion(label="Generation Configurations", open=False):
max_new_tokens = gr.Slider(minimum=128, maximum=4096, value=2048, label="Max New Tokens", step=128)
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature", step=0.01)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top-p", step=0.01)
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
model_dropdown_a.change(load_model_a, inputs=[model_dropdown_a], outputs=[chatbot_a])
model_dropdown_b.change(load_model_b, inputs=[model_dropdown_b], outputs=[chatbot_b])
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
if __name__ == "__main__":
demo.queue().launch()