Spaces:
Sleeping
Sleeping
0.2 adding cloned space
Browse files- README.md +2 -2
- app.py +192 -47
- requirements.txt +6 -1
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Bot Royale
|
3 |
-
emoji:
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
@@ -10,4 +10,4 @@ pinned: false
|
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
-
|
|
|
1 |
---
|
2 |
title: Bot Royale
|
3 |
+
emoji: 🥊
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
|
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
A chatbot arena battle royale, based on a script by Mohamed Rashad for the [Arabic Chatbot Arena](MohamedRashad/Arabic-Chatbot-Arena). Using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
app.py
CHANGED
@@ -1,63 +1,208 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
+
import spaces
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
3 |
+
import torch
|
4 |
import gradio as gr
|
5 |
+
import logging
|
6 |
+
from huggingface_hub import login
|
7 |
+
import os
|
8 |
|
9 |
+
from threading import Thread
|
10 |
+
import subprocess
|
11 |
+
subprocess.run('pip install -U flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
+
|
13 |
+
logging.basicConfig(level=logging.DEBUG)
|
14 |
+
|
15 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
16 |
+
login(token=HF_TOKEN)
|
17 |
+
|
18 |
+
models_available = [
|
19 |
+
"Aleph-Alpha/Pharia-1-LLM-7B-control-hf",
|
20 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
21 |
+
]
|
22 |
+
|
23 |
+
tokenizer_a, model_a = None, None
|
24 |
+
tokenizer_b, model_b = None, None
|
25 |
+
torch_dtype = torch.bfloat16
|
26 |
+
attn_implementation = "flash_attention_2"
|
27 |
|
28 |
+
def load_model_a(model_id):
|
29 |
+
global tokenizer_a, model_a
|
30 |
+
tokenizer_a = AutoTokenizer.from_pretrained(model_id)
|
31 |
+
logging.debug(f"model A: {tokenizer_a.eos_token}")
|
32 |
+
try:
|
33 |
+
model_a = AutoModelForCausalLM.from_pretrained(
|
34 |
+
model_id,
|
35 |
+
torch_dtype=torch_dtype,
|
36 |
+
device_map="auto",
|
37 |
+
attn_implementation=attn_implementation,
|
38 |
+
trust_remote_code=True,
|
39 |
+
).eval()
|
40 |
+
except Exception as e:
|
41 |
+
logging.debug(f"Using default attention implementation in {model_id}")
|
42 |
+
logging.debug(f"Error: {e}")
|
43 |
+
model_a = AutoModelForCausalLM.from_pretrained(
|
44 |
+
model_id,
|
45 |
+
torch_dtype=torch_dtype,
|
46 |
+
device_map="auto",
|
47 |
+
trust_remote_code=True,
|
48 |
+
).eval()
|
49 |
+
model_a.tie_weights()
|
50 |
+
return gr.update(label=model_id)
|
51 |
+
|
52 |
+
def load_model_b(model_id):
|
53 |
+
global tokenizer_b, model_b
|
54 |
+
tokenizer_b = AutoTokenizer.from_pretrained(model_id)
|
55 |
+
logging.debug(f"model B: {tokenizer_b.eos_token}")
|
56 |
+
try:
|
57 |
+
model_b = AutoModelForCausalLM.from_pretrained(
|
58 |
+
model_id,
|
59 |
+
torch_dtype=torch_dtype,
|
60 |
+
device_map="auto",
|
61 |
+
attn_implementation=attn_implementation,
|
62 |
+
trust_remote_code=True,
|
63 |
+
).eval()
|
64 |
+
except Exception as e:
|
65 |
+
logging.debug(f"Error: {e}")
|
66 |
+
logging.debug(f"Using default attention implementation in {model_id}")
|
67 |
+
model_b = AutoModelForCausalLM.from_pretrained(
|
68 |
+
model_id,
|
69 |
+
torch_dtype=torch_dtype,
|
70 |
+
device_map="auto",
|
71 |
+
trust_remote_code=True,
|
72 |
+
).eval()
|
73 |
+
model_b.tie_weights()
|
74 |
+
return gr.update(label=model_id)
|
75 |
|
76 |
+
@spaces.GPU()
|
77 |
+
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
text_streamer_a = TextIteratorStreamer(tokenizer_a, skip_prompt=True)
|
80 |
+
text_streamer_b = TextIteratorStreamer(tokenizer_b, skip_prompt=True)
|
|
|
|
|
|
|
81 |
|
82 |
+
system_prompt_list = [{"role": "system", "content": system_prompt}] if system_prompt else []
|
83 |
+
input_text_list = [{"role": "user", "content": input_text}]
|
84 |
|
85 |
+
chat_history_a = []
|
86 |
+
for user, assistant in chatbot_a:
|
87 |
+
chat_history_a.append({"role": "user", "content": user})
|
88 |
+
chat_history_a.append({"role": "assistant", "content": assistant})
|
89 |
|
90 |
+
chat_history_b = []
|
91 |
+
for user, assistant in chatbot_b:
|
92 |
+
chat_history_b.append({"role": "user", "content": user})
|
93 |
+
chat_history_b.append({"role": "assistant", "content": assistant})
|
94 |
+
|
95 |
+
base_messages = system_prompt_list + chat_history_a + input_text_list
|
96 |
+
new_messages = system_prompt_list + chat_history_b + input_text_list
|
97 |
+
|
98 |
+
input_ids_a = tokenizer_a.apply_chat_template(
|
99 |
+
base_messages,
|
100 |
+
add_generation_prompt=True,
|
101 |
+
return_tensors="pt"
|
102 |
+
).to(model_a.device)
|
103 |
+
|
104 |
+
input_ids_b = tokenizer_b.apply_chat_template(
|
105 |
+
new_messages,
|
106 |
+
add_generation_prompt=True,
|
107 |
+
return_tensors="pt"
|
108 |
+
).to(model_b.device)
|
109 |
+
|
110 |
+
generation_kwargs_a = dict(
|
111 |
+
input_ids=input_ids_a,
|
112 |
+
streamer=text_streamer_a,
|
113 |
+
max_new_tokens=max_new_tokens,
|
114 |
+
pad_token_id=tokenizer_a.eos_token_id,
|
115 |
+
do_sample=True,
|
116 |
+
temperature=temperature,
|
117 |
+
top_p=top_p,
|
118 |
+
repetition_penalty=repetition_penalty,
|
119 |
+
)
|
120 |
+
generation_kwargs_b = dict(
|
121 |
+
input_ids=input_ids_b,
|
122 |
+
streamer=text_streamer_b,
|
123 |
+
max_new_tokens=max_new_tokens,
|
124 |
+
pad_token_id=tokenizer_b.eos_token_id,
|
125 |
+
do_sample=True,
|
126 |
temperature=temperature,
|
127 |
top_p=top_p,
|
128 |
+
repetition_penalty=repetition_penalty,
|
129 |
+
)
|
130 |
|
131 |
+
thread_a = Thread(target=model_a.generate, kwargs=generation_kwargs_a)
|
132 |
+
thread_b = Thread(target=model_b.generate, kwargs=generation_kwargs_b)
|
133 |
|
134 |
+
thread_a.start()
|
135 |
+
thread_b.start()
|
136 |
+
|
137 |
+
chatbot_a.append([input_text, ""])
|
138 |
+
chatbot_b.append([input_text, ""])
|
139 |
+
|
140 |
+
finished_a = False
|
141 |
+
finished_b = False
|
142 |
+
|
143 |
+
while not (finished_a and finished_b):
|
144 |
+
if not finished_a:
|
145 |
+
try:
|
146 |
+
text_a = next(text_streamer_a)
|
147 |
+
if tokenizer_a.eos_token in text_a:
|
148 |
+
eot_location = text_a.find(tokenizer_a.eos_token)
|
149 |
+
text_a = text_a[:eot_location]
|
150 |
+
finished_a = True
|
151 |
+
chatbot_a[-1][-1] += text_a
|
152 |
+
yield chatbot_a, chatbot_b
|
153 |
+
except StopIteration:
|
154 |
+
finished_a = True
|
155 |
+
|
156 |
+
if not finished_b:
|
157 |
+
try:
|
158 |
+
text_b = next(text_streamer_b)
|
159 |
+
if tokenizer_b.eos_token in text_b:
|
160 |
+
eot_location = text_b.find(tokenizer_b.eos_token)
|
161 |
+
text_b = text_b[:eot_location]
|
162 |
+
finished_b = True
|
163 |
+
chatbot_b[-1][-1] += text_b
|
164 |
+
yield chatbot_a, chatbot_b
|
165 |
+
except StopIteration:
|
166 |
+
finished_b = True
|
167 |
+
|
168 |
+
return chatbot_a, chatbot_b
|
169 |
+
|
170 |
+
def clear():
|
171 |
+
return [], []
|
172 |
+
|
173 |
+
arena_notes = """## Important Notes:
|
174 |
+
- Sometimes an error may occur when generating the response, in this case, please try again.
|
175 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
+
with gr.Blocks() as demo:
|
178 |
+
with gr.Column():
|
179 |
+
gr.HTML("<center><h1>🤖le Royale</h1></center>")
|
180 |
+
gr.Markdown(arena_notes)
|
181 |
+
system_prompt = gr.Textbox(lines=1, label="System Prompt", value="أنت متحدث لبق باللغة العربية!", rtl=True, text_align="right", show_copy_button=True)
|
182 |
+
with gr.Row(variant="panel"):
|
183 |
+
with gr.Column():
|
184 |
+
model_dropdown_a = gr.Dropdown(label="Model A", choices=models_available, value=None)
|
185 |
+
chatbot_a = gr.Chatbot(label="Model A", rtl=True, likeable=True, show_copy_button=True, height=500)
|
186 |
+
with gr.Column():
|
187 |
+
model_dropdown_b = gr.Dropdown(label="Model B", choices=models_available, value=None)
|
188 |
+
chatbot_b = gr.Chatbot(label="Model B", rtl=True, likeable=True, show_copy_button=True, height=500)
|
189 |
+
with gr.Row(variant="panel"):
|
190 |
+
with gr.Column(scale=1):
|
191 |
+
submit_btn = gr.Button(value="Generate", variant="primary")
|
192 |
+
clear_btn = gr.Button(value="Clear", variant="secondary")
|
193 |
+
input_text = gr.Textbox(lines=1, label="", value="مرحبا", rtl=True, text_align="right", scale=3, show_copy_button=True)
|
194 |
+
with gr.Accordion(label="Generation Configurations", open=False):
|
195 |
+
max_new_tokens = gr.Slider(minimum=128, maximum=4096, value=2048, label="Max New Tokens", step=128)
|
196 |
+
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature", step=0.01)
|
197 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top-p", step=0.01)
|
198 |
+
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
|
199 |
+
|
200 |
+
model_dropdown_a.change(load_model_a, inputs=[model_dropdown_a], outputs=[chatbot_a])
|
201 |
+
model_dropdown_b.change(load_model_b, inputs=[model_dropdown_b], outputs=[chatbot_b])
|
202 |
+
|
203 |
+
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
204 |
+
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
205 |
+
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
|
206 |
|
207 |
if __name__ == "__main__":
|
208 |
+
demo.queue().launch()
|
requirements.txt
CHANGED
@@ -1 +1,6 @@
|
|
1 |
-
huggingface_hub==0.22.2
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
transformers==4.44.1
|
3 |
+
torch
|
4 |
+
accelerate==0.33.0
|
5 |
+
sentencepiece==0.2.0
|
6 |
+
spaces
|