File size: 6,512 Bytes
2cdce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import folium
import confuse
import numpy as np
from math import isnan
import geopandas as gpd
from shapely.geometry import Point
from PIL import Image
from tqdm import tqdm

# Initialzie custom basemaps for folium
basemaps = {
    'Google Maps': folium.TileLayer(
        tiles = 'https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}',
        attr = 'Google',
        name = 'Google Maps',
        overlay = True,
        control = True
    ),
    'Google Satellite': folium.TileLayer(
        tiles = 'https://mt1.google.com/vt/lyrs=s&x={x}&y={y}&z={z}',
        attr = 'Google',
        name = 'Google Satellite',
        overlay = True,
        control = True
    ),
    'Google Terrain': folium.TileLayer(
        tiles = 'https://mt1.google.com/vt/lyrs=p&x={x}&y={y}&z={z}',
        attr = 'Google',
        name = 'Google Terrain',
        overlay = True,
        control = True
    ),
    'Google Satellite Hybrid': folium.TileLayer(
        tiles = 'https://mt1.google.com/vt/lyrs=y&x={x}&y={y}&z={z}',
        attr = 'Google',
        name = 'Google Satellite',
        overlay = True,
        control = True
    ),
    'Esri Satellite': folium.TileLayer(
        tiles = 'https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
        attr = 'Esri',
        name = 'Esri Satellite',
        overlay = True,
        control = True
    ),
    'openstreetmap': folium.TileLayer('openstreetmap'),
    'cartodbdark_matter': folium.TileLayer('cartodbdark_matter')
}


# Dictionary of JavaScript files (More Readable)
scripts_dir = './scripts/'
scripts_files = [f for f in os.listdir(scripts_dir) if f.endswith('.js')]
Scripts = {}
for f in scripts_files:
    key = f.split('.')[0].upper()
    with open(scripts_dir + f) as f:
        Scripts[key] = f.read()

def calculate_bbox(df, field):
    '''
    Calculate the bounding box of a specfic field  ID in a  given data frame
    '''
    bbox = df.loc[df['name'] == field].bounds
    r = bbox.iloc[0]
    return [r.minx, r.miny, r.maxx, r.maxy]

def tiff_to_geodataframe(im, metric, date, crs):
    '''
    Convert a tiff image to a geodataframe
    '''
    x_cords = im.coords['x'].values
    y_cords = im.coords['y'].values
    vals = im.values
    dims = vals.shape
    points = []
    v_s = []
    for lat in range(dims[1]):
        y = y_cords[lat]
        for lon in range(dims[2]):
            x = x_cords[lon]
            v = vals[:,lat,lon]
            if isnan(v[0]):
                continue
            points.append(Point(x,y))
            v_s.append(v.item())   
    d = {f'{metric}_{date}': v_s, 'geometry': points} 
    df = gpd.GeoDataFrame(d, crs = crs)
    return df

def get_bearer_token_headers(bearer_token):
    '''
    Get the bearer token headers to be used in the request to the SentinelHub API
    '''
    headers = {
    'Content-Type': 'application/json',
    'Authorization': 'Bearer '+ bearer_token,
    }
    return headers

def get_downloaded_location_img_path(clientName, metric, date, field, extension='tiff'):
    '''
    Get the path of the downloaded image in TIFF based on the:
    '''
    date_dir = f'./{clientName}/raw/{metric}/{date}/field_{field}/'
    print(f'True Color Date Dir: {date_dir}')
    os.makedirs(date_dir, exist_ok=True)
    intermediate_dirs = os.listdir(date_dir)
    print(f'Intermediate Dirs: {intermediate_dirs}')
    if len(intermediate_dirs) == 0:
        return None
    imagePath = f'{date_dir}{os.listdir(date_dir)[0]}/response.{extension}'
    print(f'Image Path: {imagePath}')
    if not os.path.exists(imagePath):
        return None
    print(f'Image Path: {imagePath}')
    return imagePath

def get_masked_location_img_path(clientName, metric, date, field):
    '''
    Get the path of the downloaded image after applying the mask in TIFF based on the:
    '''
    date_dir = f'./{clientName}/processed/{metric}/{date}/field_{field}/'
    imagePath = date_dir + 'masked.tiff'
    return imagePath

def get_curated_location_img_path(clientName, metric, date, field):
    '''
    Get the path of the downloaded image after applying the mask and converting it to geojson formay based on the:
    '''
    date_dir = f'./{clientName}/curated/{metric}/{date}/field_{field}/'
    imagePath = date_dir + 'masked.geojson'

    if os.path.exists(imagePath):
        return imagePath
    else:
        return None

def parse_app_config(path=r'config-fgm-dev.yaml'):
    config = confuse.Configuration('CropHealth', __name__)
    config.set_file(path)
    return config


def fix_image(img):
    def normalize(band):
        band_min, band_max = (band.min(), band.max())
        return ((band-band_min)/((band_max - band_min)))
    def brighten(band):
        alpha=3
        beta=0
        return np.clip(alpha*band+beta, 0,255)
    def gammacorr(band):
        gamma=0.9
        return np.power(band, 1/gamma)
    red   = img[:, :, 0]
    green = img[:, :, 1]
    blue  = img[:, :, 2]
    red_b=brighten(red)
    blue_b=brighten(blue)
    green_b=brighten(green)
    red_bg=gammacorr(red_b)
    blue_bg=gammacorr(blue_b)
    green_bg=gammacorr(green_b)
    red_bgn = normalize(red_bg)
    green_bgn = normalize(green_bg)
    blue_bgn = normalize(blue_bg)
    rgb_composite_bgn= np.dstack((red_b, green_b, blue_b))
    return rgb_composite_bgn


def creat_gif(dataset, gif_name, duration=50):
    '''
    Create a gif from a list of images
    '''
    imgs = [Image.fromarray((255*img).astype(np.uint8)) for img in dataset]
    # duration is the number of milliseconds between frames; this is 40 frames per second
    imgs[0].save(gif_name, save_all=True, append_images=imgs[1:], duration=duration, loop=1)


def add_lat_lon_to_gdf_from_geometry(gdf):
    gdf['Lat'] = gdf['geometry'].apply(lambda p: p.x)
    gdf['Lon'] = gdf['geometry'].apply(lambda p: p.y)
    return gdf

def gdf_column_to_one_band_array(gdf, column_name):
    gdf = gdf.sort_values(by=['Lat', 'Lon'])
    gdf = gdf.reset_index(drop=True)
    unique_lats_count = gdf['Lat'].nunique()
    unique_lons_count = gdf['Lon'].nunique()
    rows_arr = [[] for i in range(unique_lats_count)]
    column_values = gdf[column_name].values
    for i in tqdm(range(len(column_values))):
        row_index = i // unique_lons_count
        rows_arr[row_index].append(column_values[i])

    max_row_length = max([len(row) for row in rows_arr])
    for row in rows_arr:
        while len(row) < max_row_length:
            row.append(0)

    rows_arr = np.array(rows_arr)
    return rows_arr