Spaces:
Running
Running
File size: 11,589 Bytes
3a98934 33c23f4 1d21972 33c23f4 53f6532 a1c7d58 53f6532 166aa6c 5195c9e 33c23f4 5195c9e 33c23f4 206b5fc 5195c9e 206b5fc 53f6532 5195c9e 206b5fc 33c23f4 53f6532 33c23f4 763091b 33c23f4 763091b 53f6532 763091b 33c23f4 53f6532 33c23f4 a1c7d58 53f6532 33c23f4 a1c7d58 abdf62b 33c23f4 abdf62b 33c23f4 a1c7d58 abdf62b 33c23f4 53f6532 abdf62b 763091b 5195c9e 763091b 5195c9e 33c23f4 5195c9e 53f6532 33c23f4 53f6532 33c23f4 53f6532 33c23f4 53f6532 33c23f4 206b5fc 5195c9e 206b5fc 33c23f4 abdf62b 5195c9e 33c23f4 763091b abdf62b 33c23f4 763091b 5195c9e 33c23f4 5195c9e 53f6532 206b5fc 33c23f4 5195c9e 53f6532 206b5fc 166aa6c abdf62b 53f6532 5195c9e 53f6532 5195c9e 53f6532 33c23f4 53f6532 5195c9e 33c23f4 53f6532 5195c9e 206b5fc abdf62b 206b5fc 53f6532 abdf62b 53f6532 5195c9e 1d21972 5195c9e 1d21972 53f6532 1d21972 53f6532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import os
import json
import random
import argparse
import torch
import torchaudio
from torch.utils.data import Dataset, DataLoader, WeightedRandomSampler, Subset
from huggingface_hub import upload_folder
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, confusion_matrix
from collections import Counter
from transformers.integrations import TensorBoardCallback
from transformers import (
Wav2Vec2FeatureExtractor, HubertConfig, HubertForSequenceClassification,
Trainer, TrainingArguments,
EarlyStoppingCallback
)
MODEL = "ntu-spml/distilhubert" # modelo base
FEATURE_EXTRACTOR = Wav2Vec2FeatureExtractor.from_pretrained(MODEL) # feature extractor del modelo base
seed = 123
MAX_DURATION = 1.00 # Máxima duración de los audios
SAMPLING_RATE = FEATURE_EXTRACTOR.sampling_rate # 16kHz
token = os.getenv("HF_TOKEN")
config_file = "models_config.json"
batch_size = 1024 # TODO: repasar si sigue siendo necesario
num_workers = 12 # Núcleos de la CPU
class AudioDataset(Dataset):
def __init__(self, dataset_path, label2id, filter_white_noise, undersample_normal):
self.dataset_path = dataset_path
self.label2id = label2id
self.file_paths = []
self.filter_white_noise = filter_white_noise
self.labels = []
for label_dir, label_id in self.label2id.items():
label_path = os.path.join(self.dataset_path, label_dir)
if os.path.isdir(label_path):
for file_name in os.listdir(label_path):
audio_path = os.path.join(label_path, file_name)
self.file_paths.append(audio_path)
self.labels.append(label_id)
if undersample_normal and self.label2id:
self.undersample_normal_class()
def undersample_normal_class(self):
normal_label = self.label2id.get('1s_normal')
label_counts = Counter(self.labels)
other_counts = [count for label, count in label_counts.items() if label != normal_label]
if other_counts: # Ensure there are other counts before taking max
target_count = max(other_counts)
normal_indices = [i for i, label in enumerate(self.labels) if label == normal_label]
keep_indices = random.sample(normal_indices, target_count)
new_file_paths = []
new_labels = []
for i, (path, label) in enumerate(zip(self.file_paths, self.labels)):
if label != normal_label or i in keep_indices:
new_file_paths.append(path)
new_labels.append(label)
self.file_paths = new_file_paths
self.labels = new_labels
def __len__(self):
return len(self.file_paths)
def __getitem__(self, idx):
audio_path = self.file_paths[idx]
label = self.labels[idx]
input_values = self.preprocess_audio(audio_path)
return {
"input_values": input_values,
"labels": torch.tensor(label)
}
def preprocess_audio(self, audio_path):
waveform, sample_rate = torchaudio.load(
audio_path,
normalize=True,
)
if sample_rate != SAMPLING_RATE: # Resamplear si no es 16kHz
resampler = torchaudio.transforms.Resample(sample_rate, SAMPLING_RATE)
waveform = resampler(waveform)
if waveform.shape[0] > 1: # Si es stereo, convertir a mono
waveform = waveform.mean(dim=0, keepdim=True)
waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-6) # TODO: probar a quitar porque ya se hace, sin 1e-6 el accuracy es pésimo!!
max_length = int(SAMPLING_RATE * MAX_DURATION)
if waveform.shape[1] > max_length:
waveform = waveform[:, :max_length] # Truncar
else:
waveform = torch.nn.functional.pad(waveform, (0, max_length - waveform.shape[1])) # Padding
inputs = FEATURE_EXTRACTOR(
waveform.squeeze(),
sampling_rate=SAMPLING_RATE, # Hecho a mano, por si acaso
return_tensors="pt",
)
return inputs.input_values.squeeze()
def is_white_noise(audio):
mean = torch.mean(audio)
std = torch.std(audio)
return torch.abs(mean) < 0.001 and std < 0.01
def seed_everything(): # TODO: mirar si es necesario algo más
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# torch.backends.cudnn.deterministic = True # Para reproducibilidad
# torch.backends.cudnn.benchmark = False # Para reproducibilidad
def build_label_mappings(dataset_path):
label2id = {}
id2label = {}
label_id = 0
for label_dir in os.listdir(dataset_path):
if os.path.isdir(os.path.join(dataset_path, label_dir)):
label2id[label_dir] = label_id
id2label[label_id] = label_dir
label_id += 1
return label2id, id2label
def compute_class_weights(labels):
class_counts = Counter(labels)
total_samples = len(labels)
class_weights = {cls: total_samples / count for cls, count in class_counts.items()}
return [class_weights[label] for label in labels]
def create_dataloader(dataset_path, filter_white_noise, undersample_normal, test_size=0.2, shuffle=True, pin_memory=True):
label2id, id2label = build_label_mappings(dataset_path)
dataset = AudioDataset(dataset_path, label2id, filter_white_noise, undersample_normal)
dataset_size = len(dataset)
indices = list(range(dataset_size))
random.shuffle(indices)
split_idx = int(dataset_size * (1 - test_size))
train_indices = indices[:split_idx]
test_indices = indices[split_idx:]
train_dataset = Subset(dataset, train_indices)
test_dataset = Subset(dataset, test_indices)
labels = [dataset.labels[i] for i in train_indices]
class_weights = compute_class_weights(labels)
sampler = WeightedRandomSampler(
weights=class_weights,
num_samples=len(train_dataset),
replacement=True
)
train_dataloader = DataLoader(
train_dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, pin_memory=pin_memory
)
test_dataloader = DataLoader(
test_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory
)
return train_dataloader, test_dataloader, id2label
def load_model(model_path, id2label, num_labels):
config = HubertConfig.from_pretrained(
pretrained_model_name_or_path=model_path,
num_labels=num_labels,
id2label=id2label,
finetuning_task="audio-classification"
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = HubertForSequenceClassification.from_pretrained(
pretrained_model_name_or_path=model_path,
config=config,
torch_dtype=torch.float32, # TODO: Comprobar si se necesita float32 y ver si se puede cambiar por float16
)
model.to(device)
return model
def train_params(dataset_path, filter_white_noise, undersample_normal):
train_dataloader, test_dataloader, id2label = create_dataloader(dataset_path, filter_white_noise, undersample_normal)
model = load_model(MODEL, id2label, num_labels=len(id2label))
return model, train_dataloader, test_dataloader, id2label
def predict_params(dataset_path, model_path, filter_white_noise, undersample_normal):
_, _, id2label = create_dataloader(dataset_path, filter_white_noise, undersample_normal)
model = load_model(model_path, id2label, num_labels=len(id2label))
return model, id2label
def compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted')
acc = accuracy_score(labels, preds)
cm = confusion_matrix(labels, preds)
return {
'accuracy': acc,
'f1': f1,
'precision': precision,
'recall': recall,
'confusion_matrix': cm.tolist()
}
def main(training_args, output_dir, dataset_path, filter_white_noise, undersample_normal):
seed_everything()
model, train_dataloader, test_dataloader, id2label = train_params(dataset_path, filter_white_noise, undersample_normal)
early_stopping_callback = EarlyStoppingCallback(
early_stopping_patience=5,
early_stopping_threshold=0.001
)
trainer = Trainer(
model=model,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataloader.dataset,
eval_dataset=test_dataloader.dataset,
callbacks=[TensorBoardCallback, early_stopping_callback]
)
torch.cuda.empty_cache() # liberar memoria de la GPU
trainer.train() # resume_from_checkpoint para continuar el train
# trainer.save_model(output_dir) # Guardar modelo local.
os.makedirs(output_dir, exist_ok=True)
trainer.save_model(output_dir) # Guardar modelo local.
eval_results = trainer.evaluate()
print(f"Evaluation results: {eval_results}")
trainer.push_to_hub(token=token) # Subir modelo a perfil
upload_folder(repo_id=f"A-POR-LOS-8000/{output_dir}", folder_path=output_dir, token=token) # subir a organización y local
def predict(audio_path):
waveform, sample_rate = torchaudio.load(audio_path, normalize=True)
if sample_rate != SAMPLING_RATE:
resampler = torchaudio.transforms.Resample(sample_rate, SAMPLING_RATE)
waveform = resampler(waveform)
if waveform.shape[0] > 1:
waveform = waveform.mean(dim=0, keepdim=True)
waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-6)
max_length = int(SAMPLING_RATE * MAX_DURATION)
if waveform.shape[1] > max_length:
waveform = waveform[:, :max_length]
else:
waveform = torch.nn.functional.pad(waveform, (0, max_length - waveform.shape[1]))
inputs = FEATURE_EXTRACTOR(
waveform.squeeze(),
sampling_rate=SAMPLING_RATE,
return_tensors="pt",
)
with torch.no_grad():
logits = model(inputs.input_values.to(model.device)).logits
predicted_class_id = logits.argmax().item()
predicted_label = id2label[predicted_class_id]
return predicted_label, logits
test_samples = random.sample(test_dataloader.dataset.dataset.file_paths, 15)
for sample in test_samples:
predicted_label, logits = predict(sample)
print(f"File: {sample}")
print(f"Predicted label: {predicted_label}")
print(f"Logits: {logits}")
print("---")
def load_config(model_name):
with open(config_file, 'r') as f:
config = json.load(f)
model_config = config[model_name]
training_args = TrainingArguments(**model_config["training_args"])
model_config["training_args"] = training_args
return model_config
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--n", choices=["mon", "class"],
required=True, help="Elegir qué modelo entrenar"
)
args = parser.parse_args()
config = load_config(args.n)
training_args = config["training_args"]
output_dir = config["output_dir"]
dataset_path = config["dataset_path"]
if args.n == "mon":
filter_white_noise = False
undersample_normal = False
elif args.n == "class":
filter_white_noise = True
undersample_normal = True
main(training_args, output_dir, dataset_path, filter_white_noise, undersample_normal)
|