Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from model import predict_params, AudioDataset | |
from interfaz import estilo, my_theme | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_class, id2label_class = predict_params(model_path="distilhubert-finetuned-mixed-data", dataset_path="data/mixed_data", filter_white_noise=True) | |
def call(audiopath, model, dataset_path, filter_white_noise): | |
model.to(device) | |
model.eval() | |
audio_dataset = AudioDataset(dataset_path, {}, filter_white_noise,) | |
processed_audio = audio_dataset.preprocess_audio(audiopath) | |
inputs = {"input_values": processed_audio.to(device).unsqueeze(0)} | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
return logits | |
def predict(audio_path_pred): | |
with torch.no_grad(): | |
logits = call(audio_path_pred, model=model_class, dataset_path="data/mixed_data", filter_white_noise=True) | |
predicted_class_ids_class = torch.argmax(logits, dim=-1).item() | |
label_class = id2label_class[predicted_class_ids_class] | |
label_mapping = {0: 'Hambre', 1: 'Problemas para respirar', 2: 'Dolor', 3: 'Cansancio/Incomodidad'} | |
label_class = label_mapping.get(predicted_class_ids_class, label_class) | |
return label_class | |
def cambiar_pestaña(): | |
return gr.update(visible=False), gr.update(visible=True) | |
with gr.Blocks(theme=my_theme) as demo: | |
estilo() | |
with gr.Column(visible=False) as pag_predictor: | |
gr.Markdown("<h2>Predictor</h2>") | |
audio_input = gr.Audio( | |
min_length=1.0, | |
format="wav", | |
label="Baby recorder", | |
type="filepath", | |
) | |
gr.Button("¿Por qué llora?").click( | |
predict, | |
inputs=audio_input, | |
outputs=gr.Textbox(label="Tu bebé llora por:") | |
) | |
demo.launch(share=True) | |